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Introduction

High dimensional data sets. n sample points in dimension p, with

p = γn, p→∞.

for some fixed γ > 0.

� Common in e.g. biology (many genes, few samples), or finance (data not
stationary, many assets).

� Many recent results on PCA in this setting. Very precise knowledge of
asymptotic distributions of extremal eigenvalues.

� Test the significance of principal eigenvalues.
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Introduction

Sample covariance matrix in a high dimensional setting.

� If the entries of X ∈ Rn×p are standard i.i.d. and have a fourth moment, then

λmax

(
XTX

n− 1

)
→ (1 +

√
γ)2 a.s.

if p = γn, p→∞. [Geman, 1980, Yin et al., 1988]

� When γ ∈ (0, 1], the spectral measure converges to the following density

fγ =

√
(x− a)(b− x)

2πγx

where a = (1−√γ)2 and b = (1 +
√
γ)2. [Marc̆enko and Pastur, 1967]

� The distribution of λmax

(
XTX
n−1

)
, properly normalized, converges to the

Tracy-Widom distribution [Johnstone, 2001, Karoui, 2003]. This works well
even for small values of n, p.
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Introduction
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Spectrum of Wishart matrix with p = 500 and n = 1500.
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Introduction

We focus on the following hypothesis testing problem{
H0 : x ∼ N (0, Ip)
H1 : x ∼ N

(
0, Ip + θvvT

)
where θ > 0 and ‖v‖2 = 1.

� Of course
λmax(Ip) = 1 and λmax(Ip + θvvT ) = 1 + θ

so we can use λmax(·) as our test statistic.

� However, [Baik et al., 2005, Tao, 2011, Benaych-Georges et al., 2011] show
that when θ is small, i.e.

θ ≤ γ +
√
γ

then

λmax

(
XTX

n− 1

)
→ (1 +

√
γ)2

under both H0 and H1 in the high dimensional regime p = γn, with
γ ∈ (0, 1), p→∞, and detection using λmax(·) fails.
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Introduction

Gene expression data in [Alon et al., 1999].
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Left: Spectrum of gene expression sample covariance, and Wishart matrix with
equal total variance.

Right: Magnitude of coefficients in leading eigenvector, in decreasing order.
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Introduction

Here, we assume the leading principal component is sparse. We will use sparse
eigenvalues as a test statistic

λkmax(Σ) , max. xTΣx
s.t. Card(x) ≤ k

‖x‖2 = 1,

� We focus on the sparse eigenvector detection problem{
H0 : x ∼ N (0, Ip)
H1 : x ∼ N

(
0, Ip + θvvT

)
where θ > 0 and ‖v‖2 = 1 with Card(v) = k.

� We naturally have

λkmax(Ip) = 1 and λkmax(Ip + θvvT ) = 1 + θ
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Introduction

Berthet and Rigollet [2012] show the following results on the detection threshold

� Under H1:

λkmax(Σ̂) ≥ 1 + θ − 2(1 + θ)

√
log(1/δ)

n
with probability 1− δ.

� Under H0:

λkmax(Σ̂) ≤ 1 + 4

√
k log(9ep/k) + log(1/δ)

n
+ 4

k log(9ep/k) + log(1/δ)

n

with probability 1− δ.

This means that the detection threshold is

θ = 4

√
k log(9ep/k) + log(1/δ)

n
+ 4

k log(9ep/k) + log(1/δ)

n
+ 4

√
log(1/δ)

n

which is minimax optimal [Berthet and Rigollet, 2012, Th. 5.1].
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Sparse PCA

Optimal detection threshold using λkmax(·) is

θ = 4

√
k log(9ep/k)

n
+ . . .

� Good news: λkmax(·) is a minimax optimal statistic for detecting sparse
principal components. The dimension p only appears as a log term and this
threshold is much better than θ =

√
p/n in the dense PCA case.

� Bad news: Computing the statistic λkmax(Σ̂) is NP-Hard.

[Berthet and Rigollet, 2012] produce tractable statistics achieving the threshold

θ = 2
√
k

√
k log(4p2/δ)

n
+ . . .

which means θ →∞ when k, n, p→∞ proportionally. However p large, k fixed is
OK, empirical performance much better than this bound would predict.
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A graphical output
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Clustering of the gene expression data in the PCA versus sparse PCA basis with
500 genes. The factors f on the left are dense and each use all 500 genes while
the sparse factors g1, g2 and g3 on the right involve 6, 4 and 4 genes respectively.
(Data: Iconix Pharmaceuticals)
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Sparse PCA

Sparse regression: Lasso, Dantzig selector, sparsity inducing penalties. . .

� Sparse, `0 constrained regression is NP-hard.

� Efficient `1 convex relaxations, good bounds on statistical performance.

� These convex relaxations are optimal. No further fudging required.

Sparse PCA.

� Computing λkmax(·) is NP-hard.

� Several algorithms & convex relaxations. [Zou et al., 2006, d’Aspremont et al.,
2007, 2008, Amini and Wainwright, 2009, Journée et al., 2008, Berthet and
Rigollet, 2012]

� Statistical performance mostly unknown so far.

� Optimality of convex relaxation?

Detection problems are a good testing ground for convex relaxations. . .
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Outline

� PCA on high-dimensional data

� Approximation bounds for sparse eigenvalues

� Tractable detection for sparse PCA

� Algorithms

� Numerical results
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Approximation bounds for sparse eigenvalues

Penalized eigenvalue problem.

SPCA(ρ) , max
‖x‖2=1

xTΣx− ρCard(x)

where ρ > 0 controls the sparsity.

We can show

SPCA(ρ) = max
‖x‖2=1

p∑
i=1

(
(aTi x)2 − ρ

)
+

and form a convex relaxation of this last problem

SDP(ρ) , max.
∑p
i=1 Tr(X1/2aia

T
i X

1/2 − ρX)+

s.t. Tr(X) = 1, X � 0,

which is equivalent to a semidefinite program [d’Aspremont et al., 2008].
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Approximation bounds for sparse eigenvalues

Proposition 1. [d’Aspremont, Bach, and El Ghaoui, 2012]

Approximation ratio on SDP(ρ). Write Σ = ATA and a1, . . . , ap ∈ Rp the
columns of A. Let us call X the optimal solution to

SDP(ρ) = max.
∑p
i=1 Tr(X1/2aia

T
i X

1/2 − ρX)+

s.t. Tr(X) = 1, X � 0,

and let r = Rank(X), we have

pρ ϑr

(
SDP(ρ)

pρ

)
≤ SPCA(ρ) ≤ SDP(ρ),

where

ϑr(x) , E


xξ2

1 −
1

r − 1

r∑
j=2

ξ2
j


+


controls the approximation ratio.
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Approximation bounds for sparse eigenvalues

� By convexity, we also have ϑr(x) ≥ ϑ(x), where

ϑ(x) = E
[(
xξ2 − 1

)
+

]
=

2e−1/2x

√
2πx

+ 2(x− 1)N
(
−x−1

2

)
� Overall, we have the following approximation bounds

ϑ(c)

c
SDP(ρ) ≤ SPCA(ρ) ≤ SDP(ρ), when c ≤ SDP(ρ)

pρ
.
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Approximation bounds for sparse eigenvalues

Approximation ratio.

� No uniform approximation à la MAXCUT. . . But improved results for specific
instances, as in [Zwick, 1999] for MAXCUT on “heavy” cuts.

� Here, approximation quality is controlled by the ratio

SDP(ρ)

pρ

� Can we control this ratio for interesting problem instances?
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Outline

� PCA on high-dimensional data

� Approximation bounds for sparse eigenvalues

� Tractable detection for sparse PCA

� Algorithms

� Numerical results
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Approximation bounds for sparse eigenvalues

We focus again on the sparse eigenvector detection problem{
H0 : x ∼ N (0, Ip)
H1 : x ∼ N

(
0, Ip + θvvT

)
where θ > 0 and ‖v‖2 = 1 with Card(v) = k.

� Study the statistic SPCA(ρ)

SPCA(ρ) , max
‖x‖2=1

xTΣx− ρCard(x)

under these two hypotheses.

� Bound the approximation ratio

ϑ
(

SDP(ρ)
pρ

)
SDP(ρ)
pρ

for the testing problem above.
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Approximation bounds for sparse eigenvalues

Proposition 2. [d’Aspremont, Bach, and El Ghaoui, 2012]

Detection threshold for SPCA(ρ). Suppose we set

∆ = 4 log(9ep/k) + 4 log(1/δ) and ρ =
∆

n
+

∆√
kn(∆ + 4/e)

and define θSPCA such that

θSPCA = 2

√
k(∆ + 4/e)

n
+ . . .

then if θ > θSPCA in the Gaussian model, the test statistic based on SPCA(ρ)
discriminates between H0 and H1 with probability 1− 3δ.

Proof: Result in Berthet and Rigollet [2012] and union bounds.
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Approximation bounds for sparse eigenvalues

Proposition 3. [d’Aspremont, Bach, and El Ghaoui, 2012]

Detection threshold for SDP(ρ). Suppose p = γn and k = κp, where γ > 0,
κ ∈ (0, 1) are fixed and p is large. Define the detection threshold θSDP such that

θSDP ≥ β(γ, κ)−1 θSPCA

where

β(µ, κ) =
ϑ(c)

c
where c =

1− γ∆κ−
√
γκ√

(∆+4/e)
− 2
√

log(1/δ)
n

γ∆ + γ∆√
κ(∆+4/e)

,

then if θ > θSDP the test statistic based on SDP(ρ) discriminates between H0

and H1 with probability 1− 3δ.

Proof: Setting pρ = γ∆ + γ∆√
κ(∆+4/e)

the approx. ratio is bounded by β(γ, κ).
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Approximation bounds for sparse eigenvalues
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Approximation bounds for sparse eigenvalues

� In the regime detailed above, the detection threshold remains bounded
when k →∞. In [Berthet and Rigollet, 2012], θ →∞ when k →∞.

� For our choice of ρ, the approximation ratio blows up when κ→ 0.
Easy to fix: Another good guess for ρ when κ is small is to pick

ρ =
1

p

so the approximation ratio is of order one.

� The detection threshold for SDP(ρ) is then of order(
1 +

4

e∆

)
κ+

γ∆

1− γ∆
'
(

1 +
4

e∆

)
κ+ γ∆

when both γ, κ are small.

� This should be compared with the detection threshold for λmax(·) from
[Benaych-Georges et al., 2011] which is

√
γ + γ.

This (roughly) means SDP(ρ) achieves γ when λmax(·) fails below
√
γ.
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Outline
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Algorithms

Computing SDP(ρ). We can bound SDP(ρ)

SDP(ρ) = max.
∑p
i=1 Tr(X1/2aia

T
i X

1/2 − ρX)+

s.t. Tr(X) = 1, X � 0,

by solving the dual

minimize λmax (
∑p
i=1 Yi)

subject to Yi � aiaTi − ρI
Yi � 0, i = 1, . . . , p

in the variables Yi ∈ Sp.

� Maximum eigenvalue minimization problem.

� p matrix variables of dimension p. . .
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Algorithms

Frank-Wolfe algorithm for computing SDP(ρ).

Input: ρ > 0 and a feasible starting point Z0.
1: for k = 1 to Nmax do
2: Compute X = ∇f(Z), together with X−1 and X1/2.
3: Solve the n subproblems

minimize Tr(YiX)
subject to Yi � aiaTi − ρI

Yi � 0,
(1)

in the variables Yi ∈ Sn for i = 1, . . . , n.
4: Compute W =

∑n
i=1 Yi.

5: Update the current point, with

Zk =

(
1− 2

k + 2

)
Zk−1 +

2

k + 2
W,

6: end for
Output: A matrix Z ∈ Sn.
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Algorithms

Iteration complexity.

� Given X−1 and X1/2, the p minimization subproblems

minimize Tr(YiX)
subject to Yi � aiaTi − ρI

Yi � 0,

can be solved in closed form, with complexity O(p2).

� The individual matrices Yi do not need to be stored, we only update their
sum at each iteration.

� Overall complexity

O

(
D2p3 log2 p

ε2

)
with storage cost O(p2).
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Numerical results

Test the satistic based on SDP(ρ).

� We generate 3000 experiments, where m points xi ∈ Rp are sampled under
both hypotheses, with {

H0 : x ∼ N (0, Ip)
H1 : x ∼ N

(
0, Ip + θvvT

)
with ‖v‖2 = 1 and Card(v) = k.

� Pick p = 250, n = 1500 and k = 10. We set θ = 2/3, vi = 1/
√
k when

i ∈ [1, k] and zero otherwise.

� We compute SDPk , minρ>0 SDP(ρ) + ρk from several values of SDP(ρ)

around the oracle ρ and ρ = 0 (which is λmax(Σ̂)).

� Compare with MDPk statistic in [Berthet and Rigollet, 2012], similar to
DSPCA in [d’Aspremont et al., 2007, Amini and Wainwright, 2009], and
diagonal statistic in [Amini and Wainwright, 2009].
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Numerical results
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Numerical results
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Conclusion

� Constant approximation bounds for sparse PCA relaxations in high dimensional
regimes.

� Explicit, finite bounds on detection threshold when p→∞.

Open questions. . . .

� More efficient SDP solver.

� Better approximation bounds for κ small? We should handle the case p >> n.

� Improved approximation ratio by direct analysis of the problem under H0?

� Model Selection: do we recover the correct sparse eigenvector? See [Amini
and Wainwright, 2009] for early results.
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