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Context

Machine learning for “big data”

• Large-scale machine learning: large p, large n, large k

– p : dimension of each observation (input)

– k : number of tasks (dimension of outputs)

– n : number of observations

• Examples: computer vision, bioinformatics, signal processing

• Ideal running-time complexity: O(pn+ kn)

– Going back to simple methods

– Stochastic gradient methods (Robbins and Monro, 1951)

– Mixing statistics and optimization
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Outline

• Introduction

– Supervised machine learning and convex optimization

• Stochastic approximation algorithms (Bach and Moulines, 2011;

Bach, 2013)

– Stochastic gradient and averaging

– Strongly convex vs. non-strongly convex

– Adaptivity

• Going beyond stochastic gradient (Le Roux, Schmidt, and Bach,

2012, 2013)

– More than a single pass through the data

– Linear (exponential) convergence rate for strongly convex functions



Supervised machine learning

• Data: n observations (xi, yi) ∈ X × Y, i = 1, . . . , n, i.i.d.

• Prediction as a linear function θ⊤Φ(x) of features Φ(x) ∈ F = R
p

• (regularized) empirical risk minimization: find θ̂ solution of

min
θ∈F

1

n

n
∑

i=1

ℓ
(

yi, θ
⊤Φ(xi)

)

+ µΩ(θ)

convex data fitting term + regularizer
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⊤Φ(x)) testing cost

• Two fundamental questions: (1) computing θ̂ and (2) analyzing θ̂

– May be tackled simultaneously
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Smoothness and strong convexity

• A function g : Rp → R is µ-strongly convex if and only if
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Smoothness and strong convexity

• A function g : Rp → R is µ-strongly convex if and only if

∀θ1, θ2 ∈ R
p, g(θ1) > g(θ2) + 〈g′(θ2), θ1 − θ2〉+ µ

2‖θ1 − θ2‖2

• If g is twice differentiable: ∀θ ∈ R
p, g′′(θ) < µ · Id

• Machine learning

– with g(θ) = 1
n

∑n
i=1 ℓ(yi, θ

⊤Φ(xi))

– Hessian ≈ covariance matrix 1
n

∑n
i=1Φ(xi)Φ(xi)

⊤

– Data with invertible covariance matrix (low correlation/dimension)

– ... or with added regularization by µ
2‖θ‖2



Iterative methods for minimizing smooth functions

• Assumption: g convex and smooth on F = R
p

• Gradient descent: θt = θt−1 − γt g
′(θt−1)

– O(1/t) convergence rate for convex functions

– O(e−ρt) convergence rate for strongly convex functions

• Newton method: θt = θt−1 − g′′(θt−1)
−1g′(θt−1)

– O
(

e−ρ2t
)

convergence rate



Iterative methods for minimizing smooth functions

• Assumption: g convex and smooth on F = R
p

• Gradient descent: θt = θt−1 − γt g
′(θt−1)

– O(1/t) convergence rate for convex functions

– O(e−ρt) convergence rate for strongly convex functions

• Newton method: θt = θt−1 − g′′(θt−1)
−1g′(θt−1)

– O
(

e−ρ2t
)

convergence rate

• Key insights from Bottou and Bousquet (2008)

1. In machine learning, no need to optimize below statistical error

2. In machine learning, cost functions are averages

⇒ Stochastic approximation



Stochastic approximation

• Goal: Minimizing a function f defined on F = R
p

– given only unbiased estimates f ′
n(θn) of its gradients f ′(θn) at

certain points θn ∈ F

• Stochastic approximation

– Observation of f ′
n(θn) = f ′(θn) + εn, with εn = i.i.d. noise

– Non-convex problems
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• Goal: Minimizing a function f defined on F = R
p

– given only unbiased estimates f ′
n(θn) of its gradients f ′(θn) at

certain points θn ∈ F

• Stochastic approximation

– Observation of f ′
n(θn) = f ′(θn) + εn, with εn = i.i.d. noise

– Non-convex problems

• Machine learning - statistics

– loss for a single pair of observations: fn(θ) = ℓ(yn, θ
⊤Φ(xn))

– f(θ) = Efn(θ) = E ℓ(yn, θ
⊤Φ(xn)) = generalization error

– Expected gradient: f ′(θ) = Ef ′
n(θ) = E

{

ℓ′(yn, θ
⊤Φ(xn))Φ(xn)

}



Convex smooth stochastic approximation

• Key assumption: smoothness and/or strongly convexity



Convex smooth stochastic approximation

• Key assumption: smoothness and/or strongly convexity

• Key algorithm: stochastic gradient descent (a.k.a. Robbins-Monro)

θn = θn−1 − γn f
′
n(θn−1)

– Polyak-Ruppert averaging: θ̄n = 1
n

∑n−1
k=0 θk

– Which learning rate sequence γn? Classical setting: γn = Cn−α

- Desirable practical behavior

- Applicable (at least) to least-squares and logistic regression

- Robustness to (potentially unknown) constants (L, µ)

- Adaptivity to difficulty of the problem (e.g., strong convexity)



Convex stochastic approximation

Existing work

• Known global minimax rates of convergence (Nemirovski and

Yudin, 1983; Agarwal et al., 2010)

– Strongly convex: O((µn)−1)

Attained by averaged stochastic gradient descent with γn ∝ (µn)−1

– Non-strongly convex: O(n−1/2)

Attained by averaged stochastic gradient descent with γn ∝ n−1/2

– Bottou and Le Cun (2005); Bottou and Bousquet (2008); Hazan

et al. (2007); Shalev-Shwartz and Srebro (2008); Shalev-Shwartz

et al. (2007, 2009); Xiao (2010); Duchi and Singer (2009); Nesterov

and Vial (2008); Nemirovski et al. (2009)
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Adaptive algorithm for logistic regression

• Logistic regression: (xn, yn) ∈ R
p × {−1, 1}

– Single data point: fn(θ) = log(1 + exp(−ynθ
⊤xn))

– Generalization error: f(θ) = Efn(θ)

• Cannot be strongly convex ⇒ local strong convexity

– unless restricted to |θ⊤xn| 6 M

– µ = lowest eigenvalue of the Hessian at the optimum f ′′(θ∗)

logistic loss
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• Logistic regression: (xn, yn) ∈ R
p × {−1, 1}

– Single data point: fn(θ) = log(1 + exp(−ynθ
⊤xn))

– Generalization error: f(θ) = Efn(θ)

• Cannot be strongly convex ⇒ local strong convexity

– unless restricted to |θ⊤xn| 6 M

– µ = lowest eigenvalue of the Hessian at the optimum f ′′(θ∗)

• n steps of averaged SGD with constant step-size 1/
(

2R2
√
n
)

– with R = radius of data (Bach, 2013):

Ef(θ̄n)− f(θ∗) 6 min

{

1√
n
,
R2

nµ

}

(

15 + 5R‖θ0 − θ∗‖
)4

– Proof based on generalized self-concordance (Bach, 2010)



Adaptive algorithm for logistic regression

Proof sketch

• Step 1: use existing result f(θ̄n)−f(θ∗)+
R2
√
n
‖θ0−θ∗‖2 = O(1/

√
n)

• Step 2: f ′
n(θn−1) =

1
γ(θn−1−θn) ⇒ 1

n

∑n
k=1 f

′
k(θk−1) =

1
nγ(θ0−θn)

• Step 3:
∥

∥

∥
f ′(1

n

∑n
k=1 θk−1

)

− 1
n

∑n
k=1 f

′(θk−1)
∥

∥

∥

= O
(

f(θ̄n)− f(θ∗)
)

= O(1/
√
n) using self-concordance

• Step 4a: if f µ-strongly convex, f(θ̄n)− f(θ∗) 6
1
2µ

∥

∥f ′(θ̄n)
∥

∥

2

• Step 4b: if f self-concordant, “locally true” with µ = λmin(f
′′(θ∗))



Conclusions / Extensions

Stochastic approximation for machine learning

• Mixing convex optimization and statistics

– Non-asymptotic analysis through moment computations

– Averaging with longer steps is (more) robust and adaptive



Conclusions / Extensions

Stochastic approximation for machine learning

• Mixing convex optimization and statistics

– Non-asymptotic analysis through moment computations

– Averaging with longer steps is (more) robust and adaptive

• Future/current work - open problems

– High-probability through all moments E‖θn − θ∗‖2d
– Including a non-differentiable term (Xiao, 2010; Lan, 2010)

– Non-random errors (Schmidt, Le Roux, and Bach, 2011)

– Line search for stochastic gradient

– Non-parametric stochastic approximation

– Going beyond a single pass through the data



Going beyond a single pass over the data

• Stochastic approximation

– Assumes infinite data stream

– Observations are used only once

– Directly minimizes testing cost E(x,y) ℓ(y, θ
⊤Φ(x))



Going beyond a single pass over the data

• Stochastic approximation

– Assumes infinite data stream

– Observations are used only once

– Directly minimizes testing cost E(x,y) ℓ(y, θ
⊤Φ(x))

• Machine learning practice

– Finite data set (x1, y1, . . . , xn, yn)

– Multiple passes

– Minimizes training cost 1
n

∑n
i=1 ℓ(yi, θ

⊤Φ(xi))

– Need to regularize (e.g., by the ℓ2-norm) to avoid overfitting



Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n
∑

i=1

fi(θ) with fi(θ) = ℓ
(

yi, θ
⊤Φ(xi)

)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt
n

n
∑

i=1

f ′
i(θt−1)

– Linear (e.g., exponential) convergence rate (with strong convexity)

– Iteration complexity is linear in n
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Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n
∑

i=1

fi(θ) with fi(θ) = ℓ
(

yi, θ
⊤Φ(xi)

)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt
n

n
∑

i=1

f ′
i(θt−1)

– Linear (e.g., exponential) convergence rate (with strong convexity)

– Iteration complexity is linear in n

• Stochastic gradient descent: θt = θt−1 − γtf
′
i(t)(θt−1)

– Sampling with replacement: i(t) random element of {1, . . . , n}
– Convergence rate in O(1/t)

– Iteration complexity is independent of n



Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n
∑

i=1

fi(θ) with fi(θ) = ℓ
(

yi, θ
⊤Φ(xi)

)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt
n

n
∑

i=1

f ′
i(θt−1)

• Stochastic gradient descent: θt = θt−1 − γtf
′
i(t)(θt−1)



Stochastic vs. deterministic methods

• Goal = best of both worlds: linear rate with O(1) iteration cost
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Accelerating gradient methods - Related work

• Nesterov acceleration

– Nesterov (1983, 2004)

– Better linear rate but still O(n) iteration cost

• Hybrid methods, incremental average gradient, increasing

batch size

– Bertsekas (1997); Blatt et al. (2008); Friedlander and Schmidt

(2011)

– Linear rate, but iterations make full passes through the data.



Accelerating gradient methods - Related work

• Momentum, gradient/iterate averaging, stochastic version of

accelerated batch gradient methods

– Polyak and Juditsky (1992); Tseng (1998); Sunehag et al. (2009);

Ghadimi and Lan (2010); Xiao (2010)

– Can improve constants, but still have sublinear O(1/t) rate

• Constant step-size stochastic gradient (SG), accelerated SG

– Kesten (1958); Delyon and Juditsky (1993); Solodov (1998); Nedic

and Bertsekas (2000)

– Linear convergence, but only up to a fixed tolerance.

• Stochastic methods in the dual

– Shalev-Shwartz and Zhang (2012)

– Linear rate but limited choice for the fi’s



Stochastic average gradient

(Le Roux, Schmidt, and Bach, 2012)

• Stochastic average gradient (SAG) iteration

– Keep in memory the gradients of all functions fi, i = 1, . . . , n

– Random selection i(t) ∈ {1, . . . , n} with replacement

– Iteration: θt = θt−1 −
γt
n

n
∑

i=1

yti with yti =

{

f ′
i(θt−1) if i = i(t)

yt−1
i otherwise



Stochastic average gradient

(Le Roux, Schmidt, and Bach, 2012)

• Stochastic average gradient (SAG) iteration

– Keep in memory the gradients of all functions fi, i = 1, . . . , n

– Random selection i(t) ∈ {1, . . . , n} with replacement

– Iteration: θt = θt−1 −
γt
n

n
∑

i=1

yti with yti =

{

f ′
i(θt−1) if i = i(t)

yt−1
i otherwise

• Stochastic version of incremental average gradient (Blatt et al., 2008)

• Extra memory requirement

– Supervised machine learning

– If fi(θ) = ℓi(yi,Φ(xi)
⊤θ), then f ′

i(θ) = ℓ′i(yi,Φ(xi)
⊤θ)Φ(xi)

– Only need to store n real numbers



Stochastic average gradient - Convergence analysis

• Assumptions

– Each fi is L-smooth, i = 1, . . . , n

– g= 1
n

∑n
i=1 fi is µ-strongly convex (with potentially µ = 0)

– constant step size γt = 1/(16L)

– initialization with one pass of averaged SGD



Stochastic average gradient - Convergence analysis

• Assumptions

– Each fi is L-smooth, i = 1, . . . , n

– g= 1
n

∑n
i=1 fi is µ-strongly convex (with potentially µ = 0)

– constant step size γt = 1/(16L)

– initialization with one pass of averaged SGD

• Strongly convex case (Le Roux et al., 2012, 2013)

E
[

g(θt)− g(θ∗)
]

6

(8σ2

n
+

4L‖θ0−θ∗‖2
n

)

exp
(

− tmin
{ 1

8n
,

µ

16L

})

– Linear (exponential) convergence rate with O(1) iteration cost

– After one pass, reduction of cost by exp
(

−min
{1

8
,
nµ

16L

})



Stochastic average gradient - Convergence analysis

• Assumptions

– Each fi is L-smooth, i = 1, . . . , n

– g= 1
n

∑n
i=1 fi is µ-strongly convex (with potentially µ = 0)

– constant step size γt = 1/(16L)

– initialization with one pass of averaged SGD

• Non-strongly convex case (Le Roux et al., 2013)

E
[

g(θt)− g(θ∗)
]

6 48
σ2 + L‖θ0−θ∗‖2√

n

n

t

– Improvement over regular batch and stochastic gradient

– Adaptivity to potentially hidden strong convexity



Convergence analysis - Proof sketch

• Main step: find “good” Lyapunov function J(θt, y
t
1, . . . , y

t
n)

– such that E
[

J(θt, y
t
1, . . . , y

t
n)|Ft−1

]

< J(θt−1, y
t−1
1 , . . . , yt−1

n )

– no natural candidates

• Computer-aided proof

– Parameterize function J(θt, y
t
1, . . . , y

t
n) = g(θt)−g(θ∗)+quadratic

– Solve semidefinite program to obtain candidates (that depend on

n, µ, L)

– Check validity with symbolic computations



Rate of convergence comparison

• Assume that L = 100, µ = .01, and n = 80000

– Full gradient method has rate
(

1− µ
L

)

= 0.9999

– Accelerated gradient method has rate
(

1−
√

µ
L

)

= 0.9900

– Running n iterations of SAG for the same cost has rate
(

1− 1
8n

)n
= 0.8825

– Fastest possible first-order method has rate
(√

L−√
µ√

L+
√
µ

)2

= 0.9608

• Beating two lower bounds (with additional assumptions)

– (1) stochastic gradient and (2) full gradient



Stochastic average gradient

Implementation details and extensions

• The algorithm can use sparsity in the features to reduce the storage

and iteration cost

• Grouping functions together can further reduce the memory

requirement

• We have obtained good performance when L is not known with a

heuristic line-search

• Algorithm allows non-uniform sampling

• Possibility of making proximal, coordinate-wise, and Newton-like

variants



Stochastic average gradient

Simulation experiments

• protein dataset (n = 145751, p = 74)

• Dataset split in two (training/testing)

0 5 10 15 20 25 30

10
−4

10
−3

10
−2

10
−1

10
0

Effective Passes

O
b

je
c

ti
v
e

 m
in

u
s 

O
p

ti
m

u
m

 

 
Steepest

AFG

L−BFGS

pegasos

RDA

SAG (2/(L+nµ))

SAG−LS

0 5 10 15 20 25 30

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

Effective Passes

Te
st

 L
o

g
is

ti
c

 L
o

ss

 

 
Steepest

AFG

L−BFGS

pegasos

RDA

SAG (2/(L+nµ))

SAG−LS

Training cost Testing cost



Stochastic average gradient

Simulation experiments

• cover type dataset (n = 581012, p = 54)

• Dataset split in two (training/testing)
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Conclusions / Extensions

Stochastic average gradient

• Going beyond a single pass through the data

– Keep memory of all gradients for finite training sets

– Linear convergence rate with O(1) iteration complexity

– Randomization leads to easier analysis and faster rates



Conclusions / Extensions

Stochastic average gradient

• Going beyond a single pass through the data

– Keep memory of all gradients for finite training sets

– Linear convergence rate with O(1) iteration complexity

– Randomization leads to easier analysis and faster rates

• Future/current work - open problems

– Including a non-differentiable term

– Line search

– Using second-order information or non-uniform sampling

– Non-convex problems

– Distributed optimization

– Going beyond finite training sets (bound on testing cost)
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