Faster Algorithms for Sparse
Fourier Transform

Piotr Indyk
MIT

Material from:

*Hassanieh, Indyk, Katabi, Price, “Simple and Practical Algorithms for Sparse Fourier Transform, SODA’12.
*Hassanieh, Indyk, Katabi, Price, “Nearly Optimal Sparse Fourier Transform”, STOC'12.

*Hassanieh, Adib, Katabi, Indyk, "Faster GPS Via the Sparse Fourier Transform”, MOBICOM’12

Fourier Transform

Discrete Fourier Transform: - e
20
— Given: a signal x[1...n] o_.w"m
— Goal: compute the frequency vector ,. e
X’ where E 1
-60 -
IS 0?6 UI? 0?8 0?9

X'p =%, x eut/n 50

JWI:'W\’LMW | |

I
1000 2000 3000 4001
Hz

Very USEfU| tPOI: o _ W= Sampled Audio Data (Time)
— Compression (audio, image, video) s DFT of Audio Samples (Frequency)

— Signal processing
— Data analysis
— Communication

— Computation (convolution, error-
correcting codes, ..)

3ec

o
© =
e ——

Known algorithms

Fast Fourier Transform (FFT) computes the frequencies in
time O(n log n)
But, we can do better if we only care about small number
k of “dominant frequencies”

— E.g., recover assume it is k-sparse (only k non-zero entries)

Algorithms:

— Boolean cube (Hadamard Transform): [KM] (cf. [GL])

— Complex FT: [Mansour’92, GGIMS’02, AGS’03, GMS’05, Iwen’10,
Akavia’10]

Best running time*: k log®n for some c=0(1) [GMSO05,
lwen’10]

— Improve over FFT for n/k >> log¢!n

— Infact, the running time can be sub-linear in n
Problem:

— cisaround 4

— Need n/k > 40,000 to beat FFTW for n=222

Goal:
— Theory: improve over FFT for all values of k=o(n)
— Improve in practice

*Assuming entries of x are integers with O(log n) bits of precision.

Our results: theory

All algorithms randomized, with constant probability of
success, n is a power of 2

Exactly k-sparse case : O(k log n)

— Optimal if FFT optimal for k>n®(1)
Approximately k-sparse case - |,/l, guarantee:

[Xyl |, € Cminy e | [X-27]| |, for an approx C>1
— We get O(k log(n) log(n/k)) time

— Improves over FFT for any k << n

Slower (but sub-linear) algorithm for a stronger I__/I,
guarantee

Same time, sample complexity reduced by log n factor
(i.e., to O(k)* or O(k log(n)), for the

— Sample optimal (even in the average case)
*Similar result was recently independently discovered by Pawar and Ramchandran

Our results: experiments

* Significant improvement in running times over prior work

— E.g., for n=222, a variant of our algorithm (for the exactly k-
sparse case) is faster than FFTW for k up to about 21/

— Best prior implementation of [GMS’05] due to Iwen achieved
this breakpoint for k up to about 2’

e Applications:
— GPS synchronization [Hassanieh-Adib-Katabi-Indyk’12]

— Spectrum sensing [Yenduri—GiIbert’lZ], [Hassanieh-Shi-Abari-Hamed-Katabi’13]

— Magnetic Resonance Spectroscopy [Shi-Andronesi- Hassanieh-Ghazi-
Katabi-Adalsteinsson’13]

— Exploiting Sparseness in Speech for Fast Acoustic Feature
Extraction [Nirjon-Dickerson- Stankovic-Shen-Jiang’13]

Sparse FFT — exact sparsity

Intuition: Fourier

n-point DFT : 7zlog(7)

x mp x

Time Domain Signal Frequency Domain

n-point DFT of first B
terms : zzlog(7)

XX Boxcar ‘ X ‘* sinc

Mﬂ\mm

Cut off Time signal Frequency Domain

B-point DFT of first B
terms: Alog(5)

Alias (XX Boxcar)

N 1

First B samples Frequency Domain Subsample (X‘xsinc)

Balls and bins

We we would like this l

.. to act like a balls and bins process:

— Each non-zero coefficient is © ©

“hashed” into one of B bins
— Coefficients in the same bin sum up

— Most coefficients are isolated in a

bin so they can be easily* recovered 7.

*Charikar-Chen-FarachColton’02, Estan-Varghese’03, Cormode-Muthukrishnan’04, Gilbert-Strauss-
Vershynin-Tropp’06, Berinde-Gilbert-Indyk-Karloff-Strauss’08, Sarvotham-Baron-Baraniuk’06,’08, , Lu-
Montanari- Prabhakar’08, Wang-Wainwright-Ramchandran’10, Akcakaya-Tarokh’11....

Towards balls and bins

* |ssues:

— “Hashing”: needs a random
hashing of the spectrum |

— “Leaky” buckets

— Finding the support

\ =
\ A
,/.;;

Reducing leakage

e -
5

/I | _&

|
i

/ z.//, ﬁv/ﬂ..,,,

.

b L_IFS

Filters: rectangular filter
(used in[GGIMS02,GMSO05])

|||||||||||

20
1.5
15
1.0 1
10
0.5F 1
5
0'GO 20 40 60 80 100 0

* Rectangular -> Sinc
— Polynomial decay
— Leaking many buckets

Filters: Gaussian

Filter (time)

* Gaussian -> Gaussian
— Exponential decay
— Leaking to (log n)¥/2 buckets

Filters: Sinc X Gaussian

.21
SN 1 I Y I I
Bin

* Sinc X Gaussian -> Boxcar*Gaussian
— Still exponential decay
— Leaking to <1 buckets

— Sufficient contribution to the correct bucket
e Actually we use Dolph-Chebyshev filters

Finding the support

Finding the supp

y'= B-point DFT (x x F)
= Subsample(x'*F’)

Assume no collisions:

— At most one large frequency hashes in
each bucket.

ort

to

— Large frequency f, hashes to bucket b,

Y p1=X 11F'a +|,eaka'gé
Let x* be the signal time-shifted by t
l.e. X%=X, .
Recall DFT(x®), = x’; e -2mtf/n
y*’= B-point DFT (x® x F)

yt’blzx’fle -2mitfl/n |:’A +l@-ka‘§e

-

Finding the support, ctd

At most one non-zero
frequency f, per bucket b,

We have
))
Y p1=X1F A
and
’ U’ o ’
y Tbl_x : 2ritfl/n F A
So, for t=1 we have
) 7] —_ 21 f1 /n
Yo /Y g = € 2/

Can get f1 from the phase

21 f1 / n

Spectrum Hashing
(used in[GGIMS02,GMS05])

* Every iteration needs new random hashing:

— Permute time domain signal =2 permute frequency domain
— Let

Z, =X, € -2mit B/n
— If o is invertible mod n

1
Z¢=X 1/o0 f+B

Algorithm

(exactly k-sparse case)
* [terationi:

Set the number of buckets B, = k/2'1
Permute spectrum : z, =x_ e 2™ fB/n

y'= B, -point DFT (z x F) =Subsample(z’*F’)
Repeat with time shift to get y'"

vk wihe

Subtract large frequencies recovered in previous iterations
6. Recover locations and values of remaining large frequencies

* |terationirecovers k/2'1 of the large frequencies with
probability 3/4 in O(B. log n) time

* Total time O(k log n)
— Steps 3,4 dominated by B,;=k
— Step 5 takes O(k) time per each of the O(log n) iterations

Future directions

Question 1: Sample complexity

SFFT 3.0 (exact) O(k logn) O(klogn) ¢ 0O(k)

SFFT 4.0 O(k log(n) log(n/k)) O(k log(n) log(n/k)) «=» O(k log (n/k))
(compressible)

 Can match the lower bound for average-case sparsity [Ghazi,
Hassanieh, Indyk, Katabi, Price, Lixin’13; Pawar, Ramchandran’13]

* Optimality in the worst-case ?

Question 2: Higher dimension

* The higher dimension, the sparser the data

* Alas, in d-dimension, the complexity is
O(k (log n)*)

e Question: Improve to O(k log(n9*1)) ?

Question 3: Uniform bounds

Suppose we would like a sampling
pattern that works for all x

By [Candes-Tao, Rudelson-Vershynin]

we know that O(k log* n) samples

suffice

— However, the recovery time is npolylog n
(e.g., CoSaMP)

Fastest deterministic sub-linear time

algorithm has k? polylog n complexity

[lwen]

— Mimics the bounds achievable for RIP
using sparse matrices

Question: can we get k%2 polylog n
bound for some a>0 ?

Conclusions

* O(k log n) times/samples achievable for the k-
sparse case

* O(k log n log(n/k)) achievable for the L2/L2
guarantee

* Questions:
— Fewer samples (worst case)
— Higher dimensions

— Uniform

