Faster Algorithms for Sparse Fourier Transform

Piotr Indyk MIT

Material from:

- •Hassanieh, Indyk, Katabi, Price, "Simple and Practical Algorithms for Sparse Fourier Transform, SODA'12.
- •Hassanieh, Indyk, Katabi, Price, "Nearly Optimal Sparse Fourier Transform", STOC'12.
- •Hassanieh, Adib, Katabi, Indyk, "Faster GPS Via the Sparse Fourier Transform", MOBICOM'12
- •Ghazi, Hassanieh, Indyk, Katabi, Price, Lixin, "Sample-Optimal Average-Case Sparse Fourier Transform in 2D

Fourier Transform

- Discrete Fourier Transform:
 - Given: a signal x[1...n]
 - Goal: compute the frequency vector
 x' where

$$x'_f = \Sigma_t x_t e^{-2\pi i tf/n}$$

- Compression (audio, image, video)
- Signal processing
- Data analysis
- Communication
- Computation (convolution, errorcorrecting codes, ..)

– ...

Sampled Audio Data (Time)

DFT of Audio Samples (Frequency)

Known algorithms

- Fast Fourier Transform (FFT) computes the frequencies in time O(n log n)
- But, we can do better if we only care about small number k of "dominant frequencies"
 - E.g., recover assume it is k-sparse (only k non-zero entries)
- Algorithms:
 - Boolean cube (Hadamard Transform): [KM] (cf. [GL])
 - Complex FT: [Mansour'92, GGIMS'02, AGS'03, GMS'05, Iwen'10, Akavia'10]
- Best running time*: k log^c n for some c=O(1) [GMS05, lwen'10]
 - Improve over FFT for $n/k >> log^{c-1} n$
 - In fact, the running time can be sub-linear in n
- Problem:
 - c is around 4
 - Need n/k > 40,000 to beat FFTW for $n=2^{22}$
- Goal:
 - Theory: improve over FFT for all values of k=o(n)
 - Improve in practice

^{*}Assuming entries of x are integers with $O(\log n)$ bits of precision.

Our results: theory

- All algorithms randomized, with constant probability of success, n is a power of 2
- Exactly k-sparse case : O(k log n)
 - Optimal if FFT optimal for $k>n^{\Omega(1)}$
- Approximately k-sparse case I₂/I₂ guarantee:

```
||x'-y'||_2 \le C \min_{k-\text{sparse }z'} ||x'-z'||_2 \text{ for an approx C>1}
```

- We get $O(k \log(n) \log(n/k))$ time
- Improves over FFT for any k << n
- Slower (but sub-linear) algorithm for a stronger I_{∞}/I_{2} guarantee
- Same time, sample complexity reduced by log n factor (i.e., to $O(k)^*$ or $O(k \log(n))$, for the average case in 2D

Sample optimal (even in the average case)*Similar result was recently independently discovered by Pawar and Ramchandran

Our results: experiments

- Significant improvement in running times over prior work
 - E.g., for $n=2^{22}$, a variant of our algorithm (for the exactly k-sparse case) is faster than FFTW for k up to about 2^{17}
 - Best prior implementation of [GMS'05] due to Iwen achieved this breakpoint for k up to about 2⁷
- Applications:
 - GPS synchronization [Hassanieh-Adib-Katabi-Indyk'12]
 - Spectrum sensing [Yenduri-Gilbert'12], [Hassanieh-Shi-Abari-Hamed-Katabi'13]
 - Magnetic Resonance Spectroscopy [Shi-Andronesi- Hassanieh-Ghazi-Katabi-Adalsteinsson'13]
 - Exploiting Sparseness in Speech for Fast Acoustic Feature Extraction [Nirjon-Dickerson-Stankovic-Shen-Jiang'13]

Sparse FFT – exact sparsity

Intuition: Fourier

Time Domain Signal

Cut off Time signal

First B samples

n-point DFT : $n\log(n)$

x

X'

n-point DFT of first B terms : $n\log(n)$

x× Boxcar

x'* sinc

B-point DFT of first B terms: $B\log(B)$

Alias ($\mathbf{x} \times Boxcar$)

Subsample (**x**'**sinc*)

Balls and bins

We we would like this

... to act like a balls and bins process:

- Each non-zero coefficient is "hashed" into one of B bins
- Coefficients in the same bin sum up
- Most coefficients are isolated in a bin so they can be easily* recovered

^{*}Charikar-Chen-FarachColton'02, Estan-Varghese'03, Cormode-Muthukrishnan'04, Gilbert-Strauss-Vershynin-Tropp'06, Berinde-Gilbert-Indyk-Karloff-Strauss'08, Sarvotham-Baron-Baraniuk'06,'08, , Lu-Montanari- Prabhakar'08, Wang-Wainwright-Ramchandran'10, Akcakaya-Tarokh'11....

Towards balls and bins

Issues:

"Hashing": needs a random hashing of the spectrum

– "Leaky" buckets

Finding the support

Reducing leakage

Filters: rectangular filter (used in[GGIMS02,GMS05])

- Rectangular -> Sinc
 - Polynomial decay
 - Leaking many buckets

Filters: Gaussian

- Gaussian -> Gaussian
 - Exponential decay
 - Leaking to $(\log n)^{1/2}$ buckets

Filters: Sinc × Gaussian

- Sinc × Gaussian -> Boxcar*Gaussian
 - Still exponential decay
 - Leaking to <1 buckets</p>
 - Sufficient contribution to the correct bucket
- Actually we use Dolph-Chebyshev filters

Finding the support

Finding the support

- y' = B-point DFT $(x \times F)$
 - = Subsample(x'*F')

- At most one large frequency hashes into each bucket.
- Large frequency f₁ hashes to bucket b₁

$$y'_{b1} = x'_{f1}F'_{\Delta} + leakage$$

- Let x^{τ} be the signal time-shifted by τ , i.e. $x^{\tau}_{t}=x_{t-\tau}$
- Recall DFT(x^{τ})_f = x'_f e $^{-2\pi i \tau f/n}$
- $y^{\tau}' = B$ -point DFT $(x^{\tau} \times F)$

$$y_{b1}^{\tau'} = x_{f1}^{\prime} e^{-2\pi i \tau f1/n} F_{\Delta}^{\prime} + leakage$$

Finding the support, ctd

- At most one non-zero
 frequency f₁ per bucket b₁
- We have

$$y'_{b1}=x'_{f1}F'_{\Delta}$$

and

$$y'^{\tau}_{b1} = x'_{f1} e^{-2\pi i \tau f1/n} F'_{\Delta}$$

• So, for $\tau=1$ we have

$$y'_{b1}/y'^{1}_{b1} = e^{-2\pi i f1/n}$$

Can get f1 from the phase

Spectrum Hashing (used in[GGIMS02,GMS05])

- Every iteration needs new random hashing:
 - Permute time domain signal → permute frequency domain
 - Let

$$z_t = x_{\sigma t} e^{-2\pi i t \beta/n}$$

– If σ is invertible mod n

$$z'_f = x'_{1/\sigma f + \beta}$$

Algorithm

(exactly k-sparse case)

- Iteration i:
 - 1. Set the number of buckets $B_i \approx k/2^{i-1}$
 - 2. Permute spectrum : $z_t = x_{\sigma t} e^{-2\pi i f \beta/n}$
 - 3. $y' = B_i$ -point DFT $(z \times F) = Subsample(z'*F')$
 - 4. Repeat with time shift to get y'^{τ}
 - 5. Subtract large frequencies recovered in previous iterations
 - 6. Recover locations and values of remaining large frequencies
- Iteration i recovers $k/2^{i-1}$ of the large frequencies with probability 3/4 in $O(B_i \log n)$ time
- Total time O(k log n)
 - Steps 3,4 dominated by $B_1=k$
 - Step 5 takes O(k) time per each of the O(log n) iterations

Future directions

Question 1: Sample complexity

Algorithm	Time	Samples	Lower bound
SFFT 3.0 (exact)	O(k log n)	O(k log n)	> O(k)
SFFT 4.0 (compressible)	O(k log(n) log(n/k))	O(k log(n) log(n/k))	→ O(k log (n/k))

- Can match the lower bound for average-case sparsity [Ghazi, Hassanieh, Indyk, Katabi, Price, Lixin'13; Pawar, Ramchandran'13]
- Optimality in the worst-case ?

Question 2: Higher dimension

- The higher dimension, the sparser the data
- Alas, in d-dimension, the complexity is O(k (log n)^{d+1})
- Question: Improve to O(k log(n^{d+1})) ?

Question 3: Uniform bounds

- Suppose we would like a sampling pattern that works for all x
- By [Candes-Tao, Rudelson-Vershynin] we know that O(k log⁴ n) samples suffice
 - However, the recovery time is npolylog n (e.g., CoSaMP)
- Fastest deterministic sub-linear time algorithm has k² polylog n complexity [lwen]
 - Mimics the bounds achievable for RIP using sparse matrices
- Question: can we get k^{2-a} polylog n bound for some a>0?

Conclusions

- O(k log n) times/samples achievable for the ksparse case
- O(k log n log(n/k)) achievable for the L2/L2 guarantee
- Questions:
 - Fewer samples (worst case)
 - Higher dimensions
 - Uniform