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Correlation mining

Correlation mining

The objective of correlation mining is to discover interesting or
unusual patterns of dependency among a large number of variables
(sequences, signals, images, videos).
Related to:

e Pattern mining, anomaly detection, cluster analysis

e Graph analytics, community detection, node/edge analysis

e Gaussian Graphical models (GGM) and extensions - Lauritzen
1996

“Big Data" aspects:
e Large numbers of signals, images, videos
e Observed correlations between signals are incomplete and
noisy

e Number of samples < number of objects of interest



Correlation mining

Correlation mining for Internetwork anomaly detection
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Patwari., H and Pacholski, " Manifold learning visualization of network traffic data.,” SIGCOMM 2005
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Correlation mining for SPAM community detection

p = 100,000, n = 30
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K. S. Xu et al. Revealing social networks of spammers through spectral clustering. Proc. ICC, 2009.



Correlation mining

Correlation mining for musicology: Mazurka Project

p=30,n=26

Mazurka in F major
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One of 49 Chopin Mazurkas Correlation of 30 performers

(Center for History and Analysis of Recorded Music (CHARM) http://www.charm.rhul.ac.uk)



Correlation mining

Correlation mining for biology: gene-gene network

p = 24,000, n =270

References Asx post-challenge (2) Sxearly (3) Sx late (4)

(—— Genes mmm—)

Samples

Source: Huang, .. ., and H, PLoS Genetics, 2011
Gene expression correlation graph

Q: What genes are "hubs” in this correlation graph?



Correlation mining

Correlation mining for predictive medicine: bipartite graph

Sxearly (3) Sxlate (4)

Samples

Q: What genes are predictive of certain symptom combinations?

Firouzi, Rajaratnam and H, " Predictive correlation screening,” AISTATS 2013 9/53



Correlation mining

Correlation mining for finance

p = 40,000, n, = 60, ny = 80

Source: “What is behind the fall in cross assets correlation?” J-J Ohana, 30 mars 2011, Riskelia’s blog.

e Left: Average correlation: 0.42, percent of strong relations 33%
e Right: Average correlation: 0.3, percent of strong relations 20%

Hubs of high correlation influence the market. What hubs changed
or persisted in Q4-10 and Q1-117

53
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Sample correlation: p = 2 variables n = 50 samples

Sample correlation:
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Sample correlation for random sequences: p = 2,

1 ] 1
5 10 15 0 25 30 35 40 45 a0
Tirne index i

Q: Are the two time sequences X; and Y; correlated, e.g.
‘(ﬁ‘xy‘ > 0.57

13/53



[EIELS

Sample correlation for random sequences: p =2, n = 50

]
5 10 15 0 25 30 35 40 45 a0
Tirne index i

Q: Are the two time sequences X; and Y; correlated?
A: No. Computed over range i = 1,...50: corrxy = —0.0809

14 /53
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Sample correlation for random sequences: p =2, n < 15

corr(X‘Y)ZO 5219 Twi uncorrelated sequenfies ‘ Corr(xl\/):,g 5128
i i T

!
5 m 15 20 25 30 35 4an 45 50
Time index i

Q: Are the two time sequences X; and Y; correlated?
A: Yes. corrxy > 0.5 over range i = 3,...12 and corrxy < —0.5

over range i = 29,...,42. o e



[EIELS

Real-world example: reported correlation divergence

Dollar Index
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Source: FuturesMag.com www.futuresmag.com/. ../Dom%20FEB2024.JPG
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Correlating a set of p = 20 sequences

20 uncarrelated sequences
45 T T

40+

35+

30+

s

20+

Time index i

Q: Are any pairs of sequences correlated? Are there patterns of

correlation?
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Thresholded (0.5) sample correlation matrix
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Apparent patterns emerge after thresholding each pairwise

correlation at £0.5.
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[EIELS

Associated sample correlation graph

[Node 5] [Nodes| [Node16| [Mode3|
Node 17 [Mode 10]  [Node 11]  [Mode 2|

Mode 1 MNode 9

[Mode 4| [MNode 13| [Node15| [Mode19| [Node14| [Node 18

[Modes|  [Mode7] [Node12]

Graph has an edge between node (variable) i and j if jj-th entry of
thresholded correlation is non-zero.

Sequences are actually uncorrelated Gaussian. 19/53
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The problem of false discoveries: phase transitions

e Number of discoveries exhibit phase transition phenomenon
e This phenomenon gets worse as p/n increases.

e Example: false discoveries of high correlation for uncorrelated
Gaussian variables

n=101, p=100 n=25 p=100 n=10, p=100

200 200 200
150 150 150
100 100 100
50 50 50
0 0 0

-1 0 1 -1 0 1 -1 0 1

Sample correlation value Sample correlation value Sample correlation value
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Dependency models

Random matrix measurement model

| | Variable 1 | Variable 2 | ... | Variable p
Sample 1 X11 X12 . le
Sample 2 X21 X22 A X2p
Sample n Xm Xno . Xnp

n X p measurement matrix X has i.i.d. elliptically distributed rows
Xi1 0 o Xip X1
X=| = = KX
Xoi -+ o Xnp X"
Columns of X index variables while rows index i.i.d. samples

p X p covariance (dispersion) matrix associated with each row is
cov(X') =X



Dependency models

Sparse multivariate dependency models

Two types of sparse (ensemble) correlation models:
e Sparse correlation (X) graphical models:
e Most correlations are zero, few marginal dependencies
e Examples: M-dependent processes, moving average (MA)
processes
e Sparse concentration (K = 1) graphical models
e Most inverse-covariance entries are zero, few conditional
dependencies
e Examples: Markov random fields, autoregressive (AR)
processes, global latent variables

e Sometimes correlation and concentration matrices are both
sparse
e Often only one of them is sparse

Refs: Meinshausen-Biihimann (2006), Friedman (2007), Bannerjee
(2008), Wiesel-Eldar-H (2010) .
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Dependency models

Gaussian graphical models - GGM - (Lauritzen 1996)

Multivariate Gaussian model

‘K|1/2
POX) = (3572 O 13 sl
ij=1

where K = [cov(X)]™!: p x p concentration (precision) matrix

e G has an edge ¢ iff [K];; # 0
e Adjacency matrix B of G obtained by thresholding K

B = h(K), h(u) = 3(sgn(lu| —p) + 1)

p is arbitrary positive threshold

24 /53



Dependency models

Banded Gaussian graphical model G

o o
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Figure: Left: inverse covariance matrix K. Right: associated graphical
model

Example: Autoregressive (AR) process: X,11 = —aX, + W, for
which X = [Xi, ..., Xp] satisfies [I — A]X = W and
K = cov1(X) = o2, [l — A][l - AT
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Dependency models

Block diagonal Gaussian graphical model G

0 O
O O
0 O O OnO,
N
|\_4\
O O O A~
S
O O O

Figure: Left: inverse covariance matrix K. Right: associated graphical
model

Example: X, = [Ya, Zn], Ya, Z, independent processes.
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Dependency models
Two coupled block Gaussian graphical model G

(O O O &/
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Example: X, = [Yn + Un, Un, Zy + U], Ya, Zn, U, independent
AR processes.
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Dependency models
Multiscale Gaussian graphical model G
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Dependency models

Spatial graphical model: Poisson random field

Let pf(x,y) be a space-time process satisfying Poisson equation

v2pt v2pt
Vx2 = Vy2 -

where W = W*(x, y) is driving process.
For small A, A, p satisfies the difference equation:

e (X T XE Ay + (X + XE ) A% — WEAZXA?y
X J J J— J
W 2(A2x + AZy)

In matrix form, as before: [I — A]X* = W* and
K = cov 1(X?) = o3, [I — A][l — A]T
A is sparse " pentadiagonal” matrix.

29 /53



Dependency models

Random field generated from Poisson equation

Figure: Poisson random field. W* = N5, + sin(w1t)e; + sin(wat)e;
(w1 = 0.025, wy = 0.02599, SNR=0dB).

30/53



Empirical

Figure:

Dependency models

partial correlation map for spatial random
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Empirical parcorr at various threshold levels. p=600, n=1500
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Dependency models

Empirical correlation map of spatial random field
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Figure: Empirical corr at various threshold levels. p=600, n=1500
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CM Theory

Correlation mining: theory

Given

Number of nodes = p

Number of samples =n

Correlation threshold = p

p X p matrix of sample correlations

Sparse graph assumption: # true edges < p?

Questions

e Can we predict critical phase transition threshold p.?

e What level of confidence/significance can one have on
discoveries for p > p.?

e Are there ways to predict the number of required samples for
given threshold level and level of statistical significance?

34 /53



CM Theory

Relevant work

e Regularized h or [r covariance estimation
e Banded covariance model: Bickel-Levina (2008)
e Sparse eigendecomposition model: Johnstone-Lu (2007)
e Stein shrinkage estimator: Ledoit-Wolf (2005),
Chen-Weisel-Eldar-H (2010)
e Gaussian graphical model selection
o /; regularized GGM: Meinshausen-Biihimann (2006),
Wiesel-Eldar-H (2010).
o Bayesian estimation: Rajaratnam-Massam-Carvalho (2008)
e Independence testing
e Sphericity test for multivariate Gaussian: Wilks (1935)
e Maximal correlation test: Moran (1980), Eagleson (1983),
Jiang (2004), Zhou (2007), Cai and Jiang (2011)
e Correlation hub screening (H, Rajaratnam 2011, 2012)

e Fixed n, asymptotic in p, covers concentration too.
e Discover degree > k hubs = test maximal k-NN correlation.

35/53



CM Theory

Hub screening theory (H and Rajaratnam 2012)

Empirical hub discoveries: For threshold p and degree parameter
0 define number N; , of vertices in sample correlation
(concentration) graph with degree d; > 0

p
Nsp = s
i=1

bsi = 1, card{j:j #i,|Q;| > p} >0
%=1 o, o.w.

where

Q- R = diag(¥) /2% diag(£)"1/2,  (correlation)
| diag(RT)"Y/2Rfdiag(R")~Y/2,  (concentration)

is sample correlation matrix or sample partial correlation matrix
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CM Theory
Asymptotic familywise false-discovery rate

Asymptotic limit on false discoveries: (H and Rajaratnam
2012): Assume that rows of X are i.i.d. with bounded elliptically
contoured density and block sparse covariance (null hypothesis).

Theorem

Let p and p = p, satisfy lim,_,oo p*/%(p — 1)(1 — pg)("_2)/2 =ens.
Then

1— exp(—)\E,p,n/2)v 0=1
P(Ns, > 0) = { 1—exp(=Aspn), 0>1°

dign = ("5 1) (Ralor )’

1

Po(p, n) = 2B((n —2)/2, 1/2)/ (1- )" du
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CM Theory
Elements of proof

e Z-score representations for sample (partial) correlation (P) R
R=U"U, P=UT[UUT]?U, U=n-1xp)

e Po(p, n): probability that a uniformly distributed vector
Zc S, , fallsin cap(r,U)Ncap(r, —U) with r = \/2(1 — p).
e As p — 0o, Ns, behaves like a Poisson random variable:
P(Ng,p = 0) — e Ao

38/53



CM Theory

Poisson-like convergence rate

Under assumption that
o p/9(p—1)(1 - p2)"=D/2 = 0(1)
can apply Chen-Stein to obtain bound

<0 (max {p_l/‘s, p~ Y (n=2), Ap,n,k,s})

A, n k.5 is dependency coefficient between J-nearest-neighbors of
Y; and its p — k furthest neighbors

P(Ns, = 0) — e

39/53



CM Theory

Predicted phase transition for false hub discoveries

False discovery probability: P(Ns, > 0) = 1 — exp(—As,p,n)

False discovery probability: p=10, 6=1 False discovery probability: p=10000, 8=1

Number of shsevations n

04 06
Applied threshold p Applied threshold p

p=10 =1 p=10000
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CM Theory

Predicted phase transition for false hub discoveries

False discovery probability: P(Ns, > 0) = 1 — exp(—As,p,n)

False discovery probability: p=10, 6=1 False discovery probability: p=10000, 8=1

Number of shsevations n

04 06
Applied threshold p Applied threshold p

p=10 =1 p=10000

Critical threshold:
Pc = \/]_ — Cé,n(P _ 1)—25/6(n—2)—2

41 /53



CM Theory

Phase transitions as function of 9, p

PHASE TRAMSITION THRESHOLD
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CM Theory

Experimental Design Table (EDT): mining connected nodes

ma | 0.010 0.025 0.050 0.075 0.100
10 | 0.99\0.99 | 0.99\0.99 | 0.99\0.99 | 0.99\0.99 | 0.99\0.99
15 | 0.96\0.96 | 0.96\0.95 | 0.95\0.95 | 0.95\0.94 | 0.95\0.94
20 |0.92\0.91 | 0.91\0.90 | 0.91\0.89 | 0.90\0.89 | 0.90\0.89
25 |0.88\0.87 | 0.87\0.86 | 0.86\0.85 | 0.85\0.84 | 0.85\0.83
30 | 0.84\0.83 | 0.83\0.81 | 0.82\0.80 | 0.81\0.79 | 0.81\0.79
35 |0.80\0.79 | 0.79\0.77 | 0.78\0.76 | 0.77\0.76 | 0.77\0.75

Table: Design table for spike-in model: p = 1000, detection power
B = 0.8. Achievable limits in FPR (a) as function of n, minimum
detectable correlation p;, and level « correlation threshold (shown as

p1\p in table).




CM Theory

From false positive rate for fixed p to p-values

Recall asymptotic false positive probability for fixed d, n, p

P(Ns, > 0) =1 — exp(—As,,n)

Can relate false postive probability to maximal correlation:
P(Ns,, > 0) = P(max|pi(3)[ > p)

with p;(k) the (partial) correlation between i and its k-NN.

= p-value associated with vertex i having observed k-NN (partial)
correlation = pj(k).

pvk(i) = 1 — exp(=Ax p,(k),n)
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Simulation validation

Experiments

Theoretical vs empirical performance guarantees
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Figure: Targeted ROC operating points («, 3) (diamonds) and observed
operating points (number pairs) of correlation screen designed from
Experimental Design Table. Each observed operating point determined

by the sample size n ranging over n = 10, 15, 20, 25, 30, 35. 4653



Experiments

Experiment: NKI gene expression dataset

Netherlands Cancer Institute (NKI) early stage breast cancer
p = 24,481 gene probes on Affymetrix HU133 GeneChip
295 samples (subjects)

Peng et al used 266 of these samples to perform covariance
selection

e They preprocessed (Cox regression) to reduce number of
variables to 1,217 genes
e They applied sparse partial correlation estimation (SPACE)

e Here we apply hub screening directly to all 24,481 gene probes

Theory predicts phase transition threshold p. 1 = 0.296
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Experiments

NKI p-value waterfall plot for partial correlation hubs:
selected discoveries shown
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Experiments

NKI p-value waterfall plot for correlation hubs
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Summary

Summary and perspectives

e Conclusions
e For large p correlation mining hypersensitive to false positives
e Theory of false positive phase transitions and significance has
been developed in context of hub screening on R, R, and
RiR,y.

e Extensions of interest
e Higher order measures of dependence (information flow)
e Time dependent samples of correlated multivariates
e Missing data - some components of multivariate are
intermittent
e Screening for other non-isomorphic sub-graphs
e Vector valued node attributes: canonical correlations.
Misaligned signals: account for miscalibration errors.
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