Divide-and-Conquer Matrix Factorization

Lester Mackey ${ }^{\dagger}$
Collaborators: Ameet Talwalkar* and Michael I. Jordan*
${ }^{\dagger}$ Stanford University \quad UC Berkeley

May 15, 2013

Motivation: Large-scale Matrix Completion

Goal: Estimate a matrix $\mathbf{L}_{0} \in \mathbb{R}^{m \times n}$ given a subset of its entries

$$
\left[\begin{array}{ccccc}
? & ? & 1 & \ldots & 4 \\
3 & ? & ? & \ldots & ? \\
? & 5 & ? & \ldots & 5
\end{array}\right] \rightarrow\left[\begin{array}{lllll}
2 & 3 & 1 & \ldots & 4 \\
3 & 4 & 5 & \ldots & 1 \\
2 & 5 & 3 & \ldots & 5
\end{array}\right]
$$

Examples

- Collaborative filtering: How will user i rate movie j ?
- Netflix: 10 million users, 100K DVD titles
- Ranking on the web: Is URL j relevant to user i ?
- Google News: millions of articles, millions of users
- Link prediction: Is user i friends with user j ?
- Facebook: 500 million users

Motivation: Large-scale Matrix Completion

Goal: Estimate a matrix $\mathbf{L}_{0} \in \mathbb{R}^{m \times n}$ given a subset of its entries

$$
\left[\begin{array}{ccccc}
? & ? & 1 & \ldots & 4 \\
3 & ? & ? & \ldots & ? \\
? & 5 & ? & \ldots & 5
\end{array}\right] \rightarrow\left[\begin{array}{lllll}
2 & 3 & 1 & \ldots & 4 \\
3 & 4 & 5 & \ldots & 1 \\
2 & 5 & 3 & \ldots & 5
\end{array}\right]
$$

State of the art MC algorithms

- Strong estimation guarantees
- Plagued by expensive subroutines (e.g., truncated SVD)

This talk

- Present divide and conquer approaches for scaling up any MC algorithm while maintaining strong estimation guarantees

Exact Matrix Completion

Goal: Estimate a matrix $\mathbf{L}_{0} \in \mathbb{R}^{m \times n}$ given a subset of its entries

Noisy Matrix Completion

Goal: Given entries from a matrix $\mathbf{M}=\mathbf{L}_{0}+\mathbb{Z} \in \mathbb{R}^{m \times n}$ where \mathbb{Z} is entrywise noise and \mathbf{L}_{0} has rank $\mathbf{r} \ll m$, n, estimate \mathbf{L}_{0}

- Good news: \mathbf{L}_{0} has $\sim(m+n) r \ll m n$ degrees of freedom

- Factored form: $\mathbf{A B}^{\top}$ for $\mathbf{A} \in \mathbb{R}^{m \times r}$ and $\mathbf{B} \in \mathbb{R}^{n \times r}$
- Bad news: Not all low-rank matrices can be recovered

Question: What can go wrong?

What can go wrong?

Entire column missing

$$
\left[\begin{array}{llllll}
1 & 2 & ? & 3 & \ldots & 4 \\
3 & 5 & ? & 4 & \ldots & 1 \\
2 & 5 & ? & 2 & \ldots & 5
\end{array}\right]
$$

- No hope of recovery!

Solution: Uniform observation model

Assume that the set of s observed entries Ω is drawn uniformly at random:

$$
\Omega \sim \operatorname{Unif}(m, n, s)
$$

What can go wrong?

Bad spread of information

$$
\mathbf{L}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right][1]\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

- Can only recover \mathbf{L} if \mathbf{L}_{11} is observed

Solution: Incoherence with standard basis (Candes and Recht, 2009)

A matrix $\mathbf{L}=\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top} \in \mathbb{R}^{m \times n}$ with $\operatorname{rank}(\mathbf{L})=r$ is incoherent if Singular vectors are not too skewed: $\left\{\begin{array}{l}\max _{i}\left\|\mathbf{U U}^{\top} \mathbf{e}_{i}\right\|^{2} \leq \mu r / m \\ \max _{i}\left\|\mathbf{V V}^{\top} \mathbf{e}_{i}\right\|^{2} \leq \mu r / n\end{array}\right.$ and not too cross-correlated: $\left\|\mathbf{U V}^{\top}\right\|_{\infty} \leq \sqrt{\frac{\mu r}{m n}}$

How do we estimate L_{0} ?

First attempt:
$\operatorname{minimize}_{\mathbf{A}} \quad \operatorname{rank}(\mathbf{A})$
subject to $\sum_{(i, j) \in \Omega}\left(\mathbf{A}_{i j}-\mathbf{M}_{i j}\right)^{2} \leq \Delta^{2}$.
Problem: Computationally intractable!
Solution: Solve convex relaxation (Fazel, Hindi, and Boyd, 2001; Candès and Plan, 2010) $\operatorname{minimize}_{\mathbf{A}} \quad\|\mathbf{A}\|_{*}$
subject to $\quad \sum_{(i, j) \in \Omega}\left(\mathbf{A}_{i j}-\mathbf{M}_{i j}\right)^{2} \leq \Delta^{2}$
where $\|\mathbf{A}\|_{*}=\sum_{k} \sigma_{k}(\mathbf{A})$ is the trace/nuclear norm of \mathbf{A}.

Questions:

- Will the nuclear norm heuristic successfully recover \mathbf{L}_{0} ?
- Can nuclear norm minimization scale to large MC problems?

Noisy Nuclear Norm Heuristic: Does it work?

Yes, with high probability.

Typical Theorem

If \mathbf{L}_{0} with rank r is incoherent, $s \gtrsim r n \log ^{2}(n)$ entries of $\mathbf{M} \in \mathbb{R}^{m \times n}$ are observed uniformly at random, and $\hat{\mathbf{L}}$ solves the noisy nuclear norm heuristic, then

$$
\left\|\hat{\mathbf{L}}-\mathbf{L}_{0}\right\|_{F} \leq f(m, n) \Delta
$$

with high probability when $\left\|\mathrm{M}-\mathrm{L}_{0}\right\|_{F} \leq \Delta$.

- See Candès and Plan (2010); Mackey, Talwalkar, and Jordan (2011). See also Keshavan, Montanari, and Oh (2010); Negahban and Wainwright (2010)
- Implies exact recovery in the noiseless setting $(\Delta=0)$

Noisy Nuclear Norm Heuristic: Does it scale?

Not quite...

- Standard interior point methods (Candes and Recht, 2009):

$$
\mathrm{O}\left(|\Omega|(m+n)^{3}+|\Omega|^{2}(m+n)^{2}+|\Omega|^{3}\right)
$$

- More efficient, tailored algorithms:
- Singular Value Thresholding (SVT) (Cai, Candès, and Shen, 2010)
- Augmented Lagrange Multiplier (ALM) (Lin, Chen, Wu, and Ma, 2009a)
- Accelerated Proximal Gradient (APG) (Toh and Yun, 2010)
- All require rank- k truncated SVD on every iteration

Take away: Many provably accurate MC algorithms are too expensive for large-scale or real-time matrix completion

Question: How can we scale up a given matrix completion algorithm and still retain estimation guarantees?

Divide-Factor-Combine (DFC)

Our Solution: Divide and conquer

(1) Divide M into submatrices.
(2) Complete each submatrix in parallel.
(3) Combine submatrix estimates to estimate L_{0}.

Advantages

- Submatrix completion is often much cheaper than completing M
- Multiple submatrix completions can be carried out in parallel
- DFC works with any base MC algorithm
- With the right choice of division and recombination, yields estimation guarantees comparable to those of the base algorithm

DFC-Proj: Partition and Project

(1) Randomly partition M into t column submatrices $\mathbf{M}=\left[\begin{array}{llll}\mathbf{C}_{1} & \mathbf{C}_{2} & \cdots & \mathbf{C}_{t}\end{array}\right]$ where each $\mathbf{C}_{i} \in \mathbb{R}^{m \times l}$
(2) Complete the submatrices in parallel to obtain

$$
\left[\begin{array}{llll}
\hat{\mathbf{C}}_{1} & \dot{\mathbf{C}}_{2} & \cdots & \hat{\mathbf{C}}_{t}
\end{array}\right]
$$

- Reduced cost: Expect t-fold speed-up per iteration
- Parallel computation: Pay cost of one cheaper MC
(3) Project submatrices onto a single low-dimensional column space
- Estimate column space of \mathbf{L}_{0} with column space of $\hat{\mathbf{C}}_{1}$

$$
\hat{\mathbf{L}}^{\text {proj }}=\hat{\mathbf{C}}_{1} \hat{\mathbf{C}}_{1}^{+}\left[\begin{array}{llll}
\hat{\mathbf{C}}_{1} & \hat{\mathbf{C}}_{2} & \cdots & \hat{\mathbf{C}}_{t}
\end{array}\right]
$$

- Common technique for randomized low-rank approximation (Frieze, Kannan, and Vempala, 1998)
- Minimal cost: $\mathrm{O}\left(m k^{2}+l k^{2}\right)$ where $k=\operatorname{rank}\left(\hat{\mathbf{L}}^{p r o j}\right)$
(4) Ensemble: Project onto column space of each $\hat{\mathbf{C}}_{j}$ and average

DFC: Does it work?

Yes, with high probability.

Theorem (Mackey, Talwalkar, and Jordan, 2011)

If \mathbf{L}_{0} with rank r is incoherent and $s=\omega\left(r^{2} n \log ^{2}(n) / \epsilon^{2}\right)$ entries of $\mathbf{M} \in \mathbb{R}^{m \times n}$ are observed uniformly at random, then $l=o(n)$ random columns suffice to have

$$
\left\|\hat{\mathbf{L}}^{\text {proj }}-\mathbf{L}_{0}\right\|_{F} \leq(2+\epsilon) f(m, n) \Delta
$$

with high probability when $\left\|\mathbf{M}-\mathbf{L}_{0}\right\|_{F} \leq \Delta$ and the noisy nuclear norm heuristic is used as a base algorithm.

- Can sample vanishingly small fraction of columns $(l / n \rightarrow 0)$
- Implies exact recovery for noiseless $(\Delta=0)$ setting

DFC: Does it work?

Yes, with high probability.

Proof Ideas:

(1) If L_{0} is incoherent (has good spread of information), its partitioned submatrices are incoherent w.h.p.
(2) Each submatrix has sufficiently many observed entries w.h.p.
\Rightarrow Submatrix completion succeeds
(3) Random submatrix captures the full column space of \mathbf{L}_{0} w.h.p.

- Analysis builds on randomized ℓ_{2} regression work of Drineas, Mahoney, and Muthukrishnan (2008)
\Rightarrow Column projection succeeds

DFC Estimation Error

Figure : Estimation error of DFC and base algorithm (APG) with $m=10 K$ and $r=10$.

DFC Speed-up

Figure: Speed-up over base algorithm (APG) for random matrices with $r=0.001 m$ and 4% of entries revealed.

Application: Collaborative filtering

Task: Given a sparsely observed matrix of user-item ratings, predict the unobserved ratings

Challenges

- Full-rank rating matrix
- Noisy, non-uniform observations

The Data

- Netflix Prize Dataset ${ }^{1}$
- 100 million ratings in $\{1, \ldots, 5\}$
- 17,770 movies, 480,189 users
${ }^{1}$ http://www.netflixprize.com/

Application: Collaborative filtering

Method	Netflix	
	RMSE	Time
Base algorithm (APG)	0.8433	2653.1 s
DFC-PROJ-25\%	0.8436	689.5 s
DFC-PROJ-10\%	0.8484	289.7 s
DFC-Proj-Ens-25\%	0.8411	689.5 s
DFC-Proj-Ens-10\%	0.8433	289.7 s

Robust Matrix Factorization

Goal: Given a matrix $\mathbf{M}=\mathbf{L}_{0}+\mathrm{S}_{0}+\mathbb{Z}$ where L_{0} is low-rank, S_{0} is sparse, and \mathbb{Z} is entrywise noise, recover \mathbf{L}_{0} (Chandrasekaran, Sanghavi, Parrilo, and Willsky, 2009; Candès, Li, Ma, and Wright, 2011; Zhou, Li, Wright, Candès, and Ma, 2010)

Examples:

- Background modeling/foreground activity detection

S

(Candès, Li, Ma, and Wright, 2011)

Robust Matrix Factorization

Goal: Given a matrix $\mathbf{M}=\mathbf{L}_{0}+\mathrm{S}_{0}+\mathrm{Z}$ where L_{0} is low-rank, S_{0} is sparse, and \mathbb{Z} is entrywise noise, recover \mathbf{L}_{0} (Chandrasekaran, Sanghavi, Parrilo, and Willsky, 2009; Candès, Li, Ma, and Wright, 2011; Zhou, Li, Wright, Candès, and Ma, 2010)

- S_{0} can be viewed as an outlier/gross corruption matrix
- Ordinary PCA breaks down in this setting
- Harder than MC: outlier locations are unknown
- More expensive than MC: dense, fully observed matrices

How do we recover \mathbf{L}_{0} ?

First attempt:

$$
\begin{aligned}
& \operatorname{minimize}_{\mathbf{L}, \mathbf{S}} \operatorname{rank}(\mathbf{L})+\lambda \operatorname{card}(\mathbf{S}) \\
& \text { subject to }
\end{aligned}\|\mathbf{M}-\mathbf{L}-\mathbf{S}\|_{F} \leq \Delta .
$$

Problem: Computationally intractable!
Solution: Convex relaxation
$\operatorname{minimize}_{\mathbf{L}, \mathbf{S}} \quad\|\mathbf{L}\|_{*}+\lambda\|\mathbf{S}\|_{1}$
subject to $\|\mathbf{M}-\mathbf{L}-\mathbf{S}\|_{F} \leq \Delta$.
where $\|\mathbf{S}\|_{1}=\sum_{i j} \mathbf{S}_{i j}$ is the ℓ_{1} entrywise norm of \mathbf{S}.
Question: Does it work?

- Will noisy Principal Component Pursuit (PCP) recover L_{0} ?

Question: Is it efficient?

- Can noisy PCP scale to large RMF problems?

Noisy Principal Component Pursuit: Does it work?

Yes, with high probability.

Theorem Zhou, Li, Wright, Candès, and Ma (2010)

If L_{0} with rank r is incoherent, and $\mathrm{S}_{0} \in \mathbb{R}^{m \times n}$ contains s non-zero entries with uniformly distributed locations, then if

$$
r=O\left(m / \log ^{2} n\right) \quad \text { and } \quad s \leq c \cdot m n
$$

the minimizer to the problem

$$
\begin{aligned}
& \operatorname{minimize}_{\mathbf{L}, \mathbf{S}} \quad\|\mathbf{L}\|_{*}+\lambda\|\mathbf{S}\|_{1} \\
& \text { subject to }
\end{aligned}\|\mathbf{M}-\mathbf{L}-\mathbf{S}\|_{F} \leq \Delta .
$$

with $\lambda=1 / \sqrt{n}$ satisfies

$$
\left\|\hat{\mathbf{L}}-\mathbf{L}_{0}\right\|_{F} \leq f(m, n) \Delta
$$

with high probability when $\left\|\mathbf{M}-\mathbf{L}_{0}-\mathrm{S}_{0}\right\|_{F} \leq \Delta$.

- See also Agarwal, Negahban, and Wainwright (2011)

Noisy Principal Component Pursuit: Is it efficient?

Not quite...

- Standard interior point methods: $\mathrm{O}\left(n^{6}\right)$ (Chandrasekaran, Sanghavi, Parrilo, and Willsky, 2009)
- More efficient, tailored algorithms:
- Accelerated Proximal Gradient (APG) (Lin, Ganesh, Wright, Wu, Chen, and Ma, 2009b)
- Augmented Lagrange Multiplier (ALM) (Lin, Chen, Wu, and Ma, 2009a)
- Require rank- k truncated SVD on every iteration
- Best case $\operatorname{SVD}(m, n, k)=\mathrm{O}(m n k)$

Idea: Leverage the divide-and-conquer techniques developed for MC in the RMF setting

DFC: Does it work?

Yes, with high probability.

Theorem (Mackey, Talwalkar, and Jordan, 2011)

If \mathbf{L}_{0} with rank r is incoherent, and $\mathrm{S}_{0} \in \mathbb{R}^{m \times n}$ contains $s \leq c \cdot m n$ non-zero entries with uniformly distributed locations, then

$$
l=O\left(\frac{r^{2} \log ^{2}(n)}{\epsilon^{2}}\right)
$$

random columns suffice to have

$$
\left\|\hat{\mathbf{L}}^{p r o j}-\mathbf{L}_{0}\right\|_{F} \leq(2+\epsilon) f(m, n) \Delta
$$

with high probability when $\left\|\mathbf{M}-\mathbf{L}_{0}-\mathbf{S}_{0}\right\|_{F} \leq \Delta$ and noisy principal component pursuit is used as the base algorithm.

- Can sample polylogarithmic number of columns
- Implies exact recovery for noiseless $(\Delta=0)$ setting

DFC Estimation Error

Figure : Estimation error of DFC and base algorithm (APG) with $m=1 K$ and $r=10$.

DFC Speed-up

Figure: Speed-up over base algorithm (APG) for random matrices with $r=0.01 \mathrm{~m}$ and 10% of entries corrupted.

Application: Video background modeling

Task

- Each video frame forms one column of matrix M
- Decompose \mathbf{M} into stationary background \mathbf{L}_{0} and moving foreground objects S_{0}

Challenges

- Video is noisy
- Foreground corruption is often clustered, not uniform

Application: Video background modeling

Example: Changes in illumination

Specs

- 1.5 minutes of lobby surveillance (Li, Huang, Gu, and Tian, 2004)
- 1546 frames, 20480 pixels
- Base algorithm: 1.5 hours
- DFC: 8 minutes

Application: Video background modeling

Example: Significant foreground variation

Specs

- 1 minute of airport surveillance (Li, Huang, Gu, and Tian, 2004)
- 1000 frames, 25344 pixels
- Base algorithm: half an hour
- DFC: 7 minutes

Future Directions

New Theory

- Analyze statistical implications of divide and conquer algorithms
- Trade-off between statistical and computational efficiency
- Impact of ensembling

New Divide-and-Conquer Strategies

- Other ways to reduce computation while preserving accuracy

DFC-NYS: Generalized Nyström Decomposition

(1) Choose a random column submatrix $\mathbf{C} \in \mathbb{R}^{m \times l}$ and a random row submatrix $\mathbf{R} \in \mathbb{R}^{d \times n}$ from M . Call their intersection \mathbf{W}.

$$
\mathbf{M}=\left[\begin{array}{cc}
\mathbf{W} & \mathbf{M}_{12} \\
\mathbf{M}_{21} & \mathbf{M}_{22}
\end{array}\right] \quad \mathbf{C}=\left[\begin{array}{c}
\mathbf{W} \\
\mathbf{M}_{21}
\end{array}\right] \quad \mathbf{R}=\left[\begin{array}{ll}
\mathbf{W} & \mathbf{M}_{12}
\end{array}\right]
$$

(2) Recover the low rank components of \mathbf{C} and \mathbf{R} in parallel to obtain $\hat{\mathbf{C}}$ and $\hat{\mathbf{R}}$
(3) Recover \mathbf{L}_{0} from $\hat{\mathbf{C}}, \hat{\mathbf{R}}$, and their intersection $\hat{\mathbf{W}}$

$$
\hat{\mathbf{L}}^{n y s}=\hat{\mathbf{C}} \hat{\mathbf{W}}^{+} \hat{\mathbf{R}}
$$

- Generalized Nyström method (Goreinov, Tyrtyshnikov, and Zamarashkin, 1997)
- Minimal cost: $\mathrm{O}\left(m k^{2}+l k^{2}+d k^{2}\right)$ where $k=\operatorname{rank}\left(\hat{\mathbf{L}}^{n y s}\right)$
(4) Ensemble: Run p times in parallel and average estimates

Future Directions

New Theory

- Analyze statistical implications of divide and conquer algorithms
- Trade-off between statistical and computational efficiency
- Impact of ensembling

New Divide-and-Conquer Strategies

- Other ways to reduce computation while preserving accuracy

New Datasets / Applications

- Practical problems with large-scale or real-time MF requirements

Future Directions

New Datasets / Applications

- Practical problems with large-scale or real-time requirements

Subspace Segmentation (with Yadong Mu and Shib-Fu Chang)

- Given (corrupted) data points drawn from a union of subspaces, identify the subspaces
- Low-rank representation (Liu, Lin, and Yu, 2010)
$\operatorname{minimize}_{\mathbf{L}, \mathbf{S}} \quad\|\mathbf{L}\|_{*}+\lambda\|\mathbf{S}\|_{2,1}$
subject to $\quad \mathrm{M}=\mathrm{ML}+\mathrm{S}$

- Applications to face clustering, video content detection, multimedia event detection, and image tagging (20K Flickr images: LRR 1.5 days \rightarrow DFC-LRR 1 hour)

The End

Thanks!

References

Agarwal, A., Negahban, S., and Wainwright, M. J. Noisy matrix decomposition via convex relaxation: Optimal rates in high dimensions. In International Conference on Machine Learning, 2011.

Cai, J. F., Candès, E. J., and Shen, Z. A singular value thresholding algorithm for matrix completion. SIAM Journal on Optimization, 20(4), 2010.
Candès, E. J. and Recht, B. Exact matrix completion via convex optimization. Foundations of Computational Mathematics, 9 (6):717-772, 2009.

Candès, E. J., Li, X., Ma, Y., and Wright, J. Robust principal component analysis? Journal of the ACM, 58(3):1-37, 2011.
Candès, E.J. and Plan, Y. Matrix completion with noise. Proceedings of the IEEE, 98(6):925 -936, 2010.
Chandrasekaran, V., Sanghavi, S., Parrilo, P. A., and Willsky, A. S. Sparse and low-rank matrix decompositions. In Allerton Conference on Communication, Control, and Computing, 2009.
Chandrasekaran, V., Parrilo, P. A., and Willsky, A. S. Latent variable graphical model selection via convex optimization. preprint, 2010.
Drineas, P., Mahoney, M. W., and Muthukrishnan, S. Relative-error CUR matrix decompositions. SIAM Journal on Matrix Analysis and Applications, 30:844-881, 2008.
Fazel, M., Hindi, H., and Boyd, S. P. A rank minimization heuristic with application to minimum order system approximation. In In Proceedings of the 2001 American Control Conference, pp. 4734-4739, 2001.
Frieze, A., Kannan, R., and Vempala, S. Fast Monte Carlo algorithms for finding low-rank approximations. In Foundations of Computer Science, 1998.
Goreinov, S. A., Tyrtyshnikov, E. E., and Zamarashkin, N. L. A theory of pseudoskeleton approximations. Linear Algebra and its Applications, 261(1-3):1-21, 1997.
Keshavan, R. H., Montanari, A., and Oh, S. Matrix completion from noisy entries. Journal of Machine Learning Research, 99: 2057-2078, 2010.
Li, L., Huang, W., Gu, I. Y. H., and Tian, Q. Statistical modeling of complex backgrounds for foreground object detection. IEEE Transactions on Image Processing, 13(11):1459-1472, 2004.
Lin, Z., Chen, M., Wu, L., and Ma, Y. The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. UIUC Technical Report UILU-ENG-09-2215, 2009a.

References II

Lin, Z., Ganesh, A., Wright, J., Wu, L., Chen, M., and Ma, Y. Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix. UIUC Technical Report UILU-ENG-09-2214, 2009 b.
Liu, G., Lin, Z., and Yu, Y. Robust subspace segmentation by low-rank representation. In International Conference on Machine Learning, 2010.

Mackey, L., Talwalkar, A., and Jordan, M. I. Divide-and-conquer matrix factorization. In Shawe-Taylor, J., Zemel, R. S., Bartlett, P. L., Pereira, F. C. N., and Weinberger, K. Q. (eds.), Advances in Neural Information Processing Systems 24, pp. 1134-1142. 2011.

Min, K., Zhang, Z., Wright, J., and Ma, Y. Decomposing background topics from keywords by principal component pursuit. In Conference on Information and Knowledge Management, 2010.
Negahban, S. and Wainwright, M. J. Restricted strong convexity and weighted matrix completion: Optimal bounds with noise. arXiv: $1009.2118 \mathrm{v} 2[\mathrm{cs} . \mathrm{IT}], 2010$.

Toh, K. and Yun, S. An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems. Pacific Journal of Optimization, 6(3):615-640, 2010.

Zhou, Z., Li, X., Wright, J., Candès, E. J., and Ma, Y. Stable principal component pursuit. In IEEE International Symposium on Information Theory Proceedings (ISIT), pp. 1518 -1522, 2010.

