Island particle

C. Dubarry, P. Del Moral, E. Moulines, C. Vergé

Institut Mines-Télécom, Télécom ParisTech/ Télécom SudParis, INRIA Bordeaux, ONERA

IHP, May 15, 2013

イロト 不得下 不良下 不良下

-

C. Dubarry, P. Del Moral, E. Moulines, C. Verge The Island particle models

Outline

- 1 Introduction
 - Definitions
 - Examples
- 2 Island Bootstrap Approximation
- 3 The double bootstrap algorithm
 - Algorithm description
 - Bias and variance of the double bootstrap
 - Numerical application
- 4 Extensions
 - Epsilon-Interaction Bootstrap
 - Effective Sample Size Selection
 - Numerical application

Introduction

Island Bootstrap Approximation The double bootstrap algorithm Extensions Definitions Examples

Outline

2 Island Bootstrap Approximation

- 3 The double bootstrap algorithm
 - Algorithm description
 - Bias and variance of the double bootstrap
 - Numerical application
- 4 Extensions
 - Epsilon-Interaction Bootstrap
 - Effective Sample Size Selection
 - Numerical application

Definitions Examples

Notations

- $(\mathbb{E}_n, \mathcal{E}_n)_{n \ge 0}$: a sequence of measurable sets.
- $(X_n)_{n\geq 0}$: a non-homogenous Markov chain with initial distribution η_0 , and Markov kernels $(M_n)_{n\geq 1}$.
- $(g_n)_{n\geq 0}$: a sequence of potential functions, $g_n:\mathbb{E}_n\mapsto \mathbb{R}^+$
- The Feynman-Kac flow associated to $(M_n, g_n)_{n\geq 0}$ is defined by

$$\eta_n(f_n) \stackrel{\text{def}}{=} \gamma_n(f_n) / \gamma_n(1) ,$$

$$\gamma_n(f_n) \stackrel{\text{def}}{=} \mathbb{E} \left[f_n(X_n) \prod_{0 \le p < n} g_p(X_p) \right] .$$

Definitions Examples

Nonlinear State-Space models or HMM

An HMM $(X_k, Y_k)_{k\geq 0}$ is a Markov process such that the conditional distribution of (X_k, Y_k) given $(X_i, Y_i)_{0\leq i\leq k-1}$ only depends on X_{k-1} .

Bayesian Network (Directed Graphical Model) Representation

900

Definitions Examples

Transition Kernel/ Likelihood

• The state dynamic is represented by a transition kernel, M_k , defined by

$$\mathbb{P}(X_{k+1} \in A \mid X_k = x_k) = M_k(x_k, A) .$$

The measurement equation is specified by

$$\mathbb{P}(Y_k \in A \mid X_k = x_k) = G_k(x_k, A) = \int_A g(x_k, y) \nu(\mathrm{d}y) ,$$

- Filtering relates to the task of inferring the state X_k from the observations $Y_{0:k} = Y_0, \ldots, Y_k$.
- The filtering distribution is an example of Feynman-Kac model with transition M_k [the prior transition] and potential $g_k(x) = g(x, Y_k)$, the likelihood of the observations.

Definitions Examples

Stochastic Optimization

- **1** Problem: Find $x_* = \max_{x \in \mathbb{X}} V(x)$ where V is a function on X.
- 2 Let $(\beta_n)_{n\geq 0}$ be a nondecreasing sequence of positive numbers such that $\lim_{n\to\infty}\beta_n=\infty$. and let $(M_n)_{n\geq 0}$ be a sequence of Markov kernels such that $\mu_n M_n=\mu_n$ where

 $\mu_n(\mathrm{d} x) \propto \mathrm{e}^{-\beta_n V(x)} \lambda(\mathrm{d} x)$ and $g_n(x) = \mathrm{e}^{-(\beta_{n+1}-\beta_n)V(x)}$

B Then, $\eta_n = \mu_n \propto \exp(-\beta_n V)$ which (under appropriate assumptions) converge weakly to a distributed to distribution concentrated on the set of local maxima.

Some Other Applications of Feynman-Kac Formulae

Signal processing and automatic control

- Open loop optimal control, optimal regulation.
- Interacting Kalman-Bucy filters.
- Stochastic and adaptive grid approximation-models
- Statistics/Probability:
 - Markov chains with constraints (w.r.t terminal values, visiting regions, constraints simulation problems,...)
 - Analysis of Boltzmann-Gibbs type distributions (simulation, partition functions, localization models...).
 - Combinatorial optimization, counting, graph-coloring
- Rare events analysis:
 - Multisplitting and branching particle models (Restart type methods).
 - Importance sampling and twisted probability measures.
 - Genealogical tree based simulations (default tree sampling models).

Definitions Examples

Feynman-Kac Flow

• The sequence $(\eta_n)_{n\geq 0}$ satisfies the recursion:

$$\eta_{n+1}(A_{n+1}) = \frac{\int \eta_n(\mathrm{d}x_n)g_n(x_n)M_{n+1}(x_n,\mathrm{d}x_{n+1})}{\int \eta_n(\mathrm{d}x_n)g_n(x_n)}$$

= $\Psi_n(\eta_n)M_{n+1}(A_{n+1})$,

where $\Psi_n : \mathcal{P}(\mathbb{E}_n) \to \mathcal{P}(\mathbb{E}_n)$ is the non-linear mapping:

$$\Psi_n(\eta_n)(A_n) \stackrel{\text{def}}{=} \frac{1}{\eta_n(g_n)} \int_{A_n} g_n(x_n) \ \eta_n(\mathrm{d} x_n) \ , \quad A_n \in \mathcal{E}_n \ .$$

Outline

1 Introduction

- Definitions
- Examples

2 Island Bootstrap Approximation

- 3 The double bootstrap algorithm
 - Algorithm description
 - Bias and variance of the double bootstrap
 - Numerical application

4 Extensions

- Epsilon-Interaction Bootstrap
- Effective Sample Size Selection
- Numerical application

Bootstrap Particle Approximation I

- Denote by N_1 the number of particles in a given island.
- The evolution of the population of an island $oldsymbol{X}_n=(X_n^1,\ldots,X_n^{N_1})$ is in two steps
 - **1** the particles are multinomially resampled with probabilities proportional to their potential $\{g_n(X_n^i)\}_{i=1}^{N_1}$;
 - 2 new particle positions are then sampled conditionally independently from the prior kernel M_{n+1} .

$$\begin{pmatrix} X_n^i \end{pmatrix} \xrightarrow{\text{selection}} \begin{pmatrix} \hat{X}_n^i \end{pmatrix} \xrightarrow{\text{mutation}} \begin{pmatrix} X_{n+1}^i \end{pmatrix}$$

Bootstrap Particle Approximation II

The island evolution defines a Markov chain specified by the transition M_{n+1} from $(\mathbf{E}_n, \boldsymbol{\mathcal{E}}_n) = (\mathbb{E}_n^{N_1}, \mathcal{E}_n^{\otimes N_1})$ to $(\mathbf{E}_{n+1}, \boldsymbol{\mathcal{E}}_{n+1}) = (\mathbb{E}_n^{N_1}, \mathcal{E}_n^{\otimes N_1})$ by

$$\begin{split} \boldsymbol{M}_{n+1}(\boldsymbol{X}_n, \mathbf{A}_{n+1}) &= \prod_{1 \le i \le N_1} \sum_{j=1}^{N_1} \frac{g_n(X_n^j)}{\sum_{\ell=1}^{N_1} g_n(X_n^\ell)} M_{n+1}(X_n^j, A_{n+1}^j) \\ &= \prod_{1 \le i \le N_1} \Psi_n(m[\boldsymbol{X}_n]) M_{n+1}(A_{n+1}^i) \;, \end{split}$$

where $m[X_n]$ denotes the empirical measure of an island

$$m[\mathbf{X}_n] = m(X_n^1, \dots, X_n^{N_1}) \stackrel{\text{def}}{=} \frac{1}{N_1} \sum_{i=1}^{N_1} \delta_{X_n^i} .$$

Particle approximation

- Denote by $\{X_n = (X_n^1, \dots, X_n^{N_1})\}_{n \ge 0}$ a Markov Chain with initial distribution $\eta_0 \stackrel{\text{def}}{=} \eta_0^{\otimes N_1}$ and transition kernel M_{n+1} .
- The island approximation of the sequences Feynman-Kac measures $\{(\eta_n,\gamma_n)\}_{n\geq 1}$ is given by

$$\eta_n^{N_1}(f_n) \stackrel{\text{def}}{=} m(\boldsymbol{X}_n, f_n)$$

$$\gamma_n^{N_1}(f_n) \stackrel{\text{def}}{=} \eta_n^{N_1}(f_n) \prod_{0 \le p < n} \eta_p^{N_1}(g_p) .$$

Unbiasedness of the particle approximation

Theorem

For any $f_n \in \mathcal{B}_b(\mathbb{E}_n)$, $\gamma_n^{N_1}(f_n)$ is an unbiased estimator of $\gamma_n(f_n)$.

Unbiasedness of the particle approximation

Theorem

For any $f_n \in \mathcal{B}_b(\mathbb{E}_n)$, $\gamma_n^{N_1}(f_n)$ is an unbiased estimator of $\gamma_n(f_n)$.

$$\begin{split} \mathbb{E}\left[\eta_{p}^{N_{1}}(f_{p})\Big|\mathcal{F}_{p-1}^{N_{1}}\right] &= \frac{1}{N_{1}}\sum_{i=1}^{N_{1}}\mathbb{E}\left[f_{p}(X_{p}^{i})\Big|\mathcal{F}_{p-1}^{N_{1}}\right] = \mathbb{E}\left[f_{p}(X_{p}^{1})\Big|\mathcal{F}_{p-1}^{N_{1}}\right] \\ &= \frac{\sum_{i=1}^{N_{1}}g_{p-1}(X_{p-1}^{i})M_{p}f_{p}(X_{p-1}^{i})}{\sum_{i=1}^{N_{1}}g_{p-1}(X_{p-1}^{i})} = \frac{\eta_{p-1}^{N_{1}}(Q_{p}f_{p})}{\eta_{p-1}^{N_{1}}(g_{p-1})} \,, \end{split}$$

where $Q_p(x_{p-1}, \mathrm{d} x_p) = g_{p-1}(x_{p-1})M_p(x_{p-1}, \mathrm{d} x_p).$

Unbiasedness of the particle approximation

Theorem

For any $f_n \in \mathcal{B}_b(\mathbb{E}_n)$, $\gamma_n^{N_1}(f_n)$ is an unbiased estimator of $\gamma_n(f_n)$.

$$\mathbb{E}\left[\gamma_n^{N_1}(f_n)\right] = \mathbb{E}\left[\mathbb{E}\left[\eta_n^{N_1}(f_n)\Big|\mathcal{F}_{n-1}^{N_1}\right] \prod_{0 \le p < n} \eta_p^{N_1}(g_p)\right]$$
$$= \mathbb{E}\left[\frac{\eta_{n-1}^{N_1}(Q_n f_n)}{\eta_{n-1}^{N_1}(g_{n-1})} \prod_{0 \le p < n} \eta_p^{N_1}(g_p)\right]$$
$$= \mathbb{E}\left[\eta_{n-1}^{N_1}(Q_n f_n) \prod_{0 \le p < n-1} \eta_p^{N_1}(g_p)\right].$$

The island Feynman-Kac model

For $\mathbf{x}_n = (x_n^1, \cdots, x_n^{N_1}) \in \mathbb{E}_n^{N_1}$ define the sample averaged potential

$$\boldsymbol{g}_n(\mathbf{x}_n) \stackrel{\text{def}}{=} \frac{1}{N_1} \sum_{i=1}^{N_1} g_n(x_n^i) \; .$$

The Feynman-Kac model associated to $({m M}_n, {m g}_n)_{n\geq 0}$ is given by

$$egin{aligned} oldsymbol{\eta}_n(oldsymbol{f}_n) &= oldsymbol{\gamma}_n(oldsymbol{f}_n) / oldsymbol{\gamma}_n(1) \ oldsymbol{\gamma}_n(oldsymbol{f}_n) &= \mathbb{E}\left[oldsymbol{f}_n(\mathbf{X}_n) \ \prod_{0 \leq p < n} oldsymbol{g}_p(\mathbf{X}_p)
ight] \,, \end{aligned}$$

where $(\boldsymbol{X}_n)_{n\geq 0}$ is a Markov chain with transition $(\boldsymbol{M}_n)_{n\geq 0}$.

Unbiasedness

Since $\boldsymbol{g}_n(\boldsymbol{X}_p) = \eta_n^{N_1}(g_p)$, the unbiasedness property implies that for any \boldsymbol{f}_n of the form $\boldsymbol{f}_n(\mathbf{x}_n) = N_1^{-1} \sum_{i=1}^{N_1} f_n(x_n^i)$

$$\mathbb{E}\left[f_n(X_n) \prod_{0 \le p < n} g_p(X_p)\right] = \mathbb{E}\left[f_n(\mathbf{X}_n) \prod_{0 \le p < n} g_p(\mathbf{X}_p)\right],$$

or equivalently

$$\boldsymbol{\gamma}_n(\boldsymbol{f}_n) = \gamma_n(f_n)$$
 and $\boldsymbol{\eta}_n(\boldsymbol{f}_n) = \eta_n(f_n)$.

For functions defined as sample mean, the Feynman-Kac models $(\eta_n, \gamma_n)_{n \ge 0}$ and $(\eta_n, \gamma_n)_{n \ge 0}$ coincide !

C. Dubarry, P. Del Moral, E. Moulines, C. Verge The Island particle models

Algorithm description Bias and variance of the double bootstrap Numerical application

Outline

1 Introduction

- Definitions
- Examples
- 2 Island Bootstrap Approximation
- 3 The double bootstrap algorithm
 - Algorithm description
 - Bias and variance of the double bootstrap
 - Numerical application

4 Extensions

- Epsilon-Interaction Bootstrap
- Effective Sample Size Selection
- Numerical application

Algorithm description Bias and variance of the double bootstrap Numerical application

Double Bootstrap

- Idea: we may apply the interacting particle system approximation of the Feynman-Kac semigroups both within each island but also between islands.
- We now describe the double bootstrap algorithm where the bootstrap algorithm is applied both within an island but also across the islands.
- Of course, many other options are available (more to come !)

Algorithm description Bias and variance of the double bootstrap Numerical application

Feynman-Kac at the island level

- Define by $\mathcal{P}(\mathbf{E}_n)$ the set of probabilities measures on $(\mathbf{E}_n, \boldsymbol{\mathcal{E}}_n)$.
- **The sequence of measures** $(\eta_n)_{n\geq 0}$ satisfies the following recursion

 $\boldsymbol{\eta}_{n+1} = \boldsymbol{\Psi}_n(\boldsymbol{\eta}_n) \boldsymbol{M}_{n+1} ,$

where $\Psi_n : \mathcal{P}(\mathbb{E}_n) \to \mathcal{P}(\mathbb{E}_n)$ is defined by

$$oldsymbol{\Psi}_n(oldsymbol{\eta}_n)(\mathrm{d}\mathbf{x}) \stackrel{ ext{def}}{=} rac{oldsymbol{g}_n(\mathbf{x}) \;oldsymbol{\eta}_n(\mathrm{d}\mathbf{x})}{oldsymbol{\eta}_n(oldsymbol{g}_n)} \;.$$

Algorithm description Bias and variance of the double bootstrap Numerical application

The double bootstrap algorithm

$$\left(oldsymbol{X}_{n}^{i}
ight) \xrightarrow{ ext{selection}} \left(\widehat{oldsymbol{X}}_{n}^{i}
ight) \xrightarrow{ ext{mutation}} \left(oldsymbol{X}_{n+1}^{i}
ight)$$

- Let N₂ be the number of interacting islands.
- During the selection stage, we select randomly N_2 islands $(\widehat{\boldsymbol{X}}_n^i)_{1 \le i \le N_2}$ among the current islands $(\boldsymbol{X}_n^i)_{1 \le i \le N_2} \in \mathbb{E}_n^{N_2}$ with probability proportional to the empirical mean of the individuals in each island

$$\boldsymbol{g}_{n}(\boldsymbol{X}_{n}^{i}) = N_{1}^{-1} \sum_{j=1}^{N_{1}} g_{n}(X_{n}^{i,j}), 1 \le i \le N_{2}.$$

During the mutation transition, selected islands $(\widehat{X}_{n}^{i})_{i=1}^{N_{2}}$ evolve randomly to a new configuration X_{n+1}^{i} according to the Markov transition M_{n+1} .

Algorithm description Bias and variance of the double bootstrap Numerical application

The double bootstrap algorithm

1: for p from 0 to n-1 do selection between islands: Sample $I_p = (I_p^i)_{i=1}^{N_2}$ multinomially with 2: proba. prop. to $\left(\frac{1}{N_1}\sum_{j=1}^{N_1}g_p(X_p^{i,j})\right)_{i=1}^{N_2}$. for i from 1 to N_2 do 3: selection within island: Sample $m{J}_p^i = (J_p^{i,j})_{i=1}^{N_1}$ multinomially with 4: proba. prop. to $\left(g_p(X_p^{I_p^i,j})\right)^{N_1}$. For $1 \leq j \leq N_1$, sample independently $X_{n+1}^{i,j}$ according to 5: $M_{p+1}(X_p^{I_p^i,J_p^j},\cdot).$ end for 6· 7: end for

Algorithm description Bias and variance of the double bootstrap Numerical application

Bootstrap approximation: bias and variance

Theorem

For any time horizon $n \ge 0$ and any bounded function $f_n \in \mathcal{B}_b(\mathbb{E}_n)$, we have

$$\lim_{N_1 \to \infty} N_1 \mathbb{E} \left[\eta_n^{N_1}(f_n) - \eta_n(f_n) \right] = B_n(f_n) ,$$
$$\lim_{N_1 \to \infty} N_1 \mathbb{V} \operatorname{ar} \left(\eta_n^{N_1}(f_n) \right) = V_n(f_n) ,$$

where $B_n(f_n)$ and $V_n(f_n)$ can be computed explicitly.

Algorithm description Bias and variance of the double bootstrap Numerical application

Double bootstrap approximation: bias and variance

Theorem

For any time horizon $n \ge 0$ and any $f_n \in \mathcal{B}_b(\mathbb{E}_n)$, we have

$$\lim_{N_1 \to \infty} \lim_{N_2 \to \infty} N_1 N_2 \mathbb{E} \left[\boldsymbol{\eta}_n^{N_2}(m(\cdot, f_n)) - \boldsymbol{\eta}_n(m(\cdot, f_n)) \right] = B_n(f_n) + \widetilde{B}_n(f_n) ,$$
$$\lim_{N_1 \to \infty} \lim_{N_2 \to \infty} N_1 N_2 \mathbb{V}ar \left(\boldsymbol{\eta}_n^{N_2}(m(\cdot, f_n)) \right) = V_n(f_n) + \widetilde{V}_n(f_n) ,$$

where $B_n(f_n)$, $\widetilde{B}_n(f_n)$, $V_n(f_n)$, $\widetilde{V}_n(f_n)$ can be computed explicitly.

- The rate of the interacting island (N_2 islands each with N_1 individuals) is the same as the one of the single island model with N_1N_2 particles.
- Even though the constant terms may be worst in the interacting island model, it allows to use parallel implementations.

Algorithm description Bias and variance of the double bootstrap Numerical application

Independent islands

Theorem

For any time horizon $n \ge 0$ and any $f_n \in \mathcal{B}_b(\mathbb{E}_n)$, we have

$$\lim_{N_1 \to \infty} N_1 \left\{ \mathbb{E} \left[\widetilde{\boldsymbol{\eta}}_n^{N_2}(m(\cdot, f_n)) \right] - \eta_n(f_n) \right\} = B_n(f_n) ,$$
$$\lim_{N_1 \to \infty} N_1 N_2 \mathbb{V} \operatorname{ar} \left(\widetilde{\boldsymbol{\eta}}_n^{N_2}(m(\cdot, f_n)) \right) = V_n(f_n) ,$$

where $B_n(f_n)$ and $V_n(f_n)$ are the same than for the single island model.

Although the variance of the particle approximation is inversely proportional to N_1N_2 , the bias is independent of N_2 and is inversely proportional to N_1 .

Algorithm description Bias and variance of the double bootstrap Numerical application

How to choose between interacting and independent islands?

		Independent islands	Interacting islands	
	Squared bias	$\frac{B_n(f_n)^2}{N_1^2}$	$\frac{\left(B_n(f_n) + \widetilde{B}_n(f_n)\right)^2}{N_1^2 N_2^2}$	
	Variance	$\frac{V_n(f_n)}{N_1 N_2}$	$\frac{V_n(f_n) + \widetilde{V}_n(f_n)}{N_1 N_2}$	
	Sum	$\frac{V_n(f_n)}{N_1 N_2} + \frac{B_n(f_n)^2}{N_1^2}$	$\frac{V_n(f_n) + \widetilde{V}_n(f_n)}{N_1 N_2}$	
$\frac{V_n(f_n)}{N_1N_2}$	$\frac{D_{2}}{D_{2}} + \frac{B_{n}(f_{n})^{2}}{N_{1}^{2}} < 0$	$\frac{V_n(f_n) + \widetilde{V}_n(f_n)}{N_1 N_2} \Leftrightarrow $	$ N_1 > \frac{B_n(f_n)^2}{\widetilde{V}_n(f_n)} N_2 . $	

The Island particle models

Algorithm description Bias and variance of the double bootstrap Numerical application

Example

1 Linear Gaussian Model

$$X_{p+1} = \phi X_p + \sigma_u U_p ,$$

$$Y_p = X_p + \sigma_v V_p ,$$

Computing the predictive distribution of the state X_n given the observations $Y_{0:n-1} = y_{0:n-1}$ up to time n-1 can be cast into the framework of Feynman-Kac model by setting for all $p \ge 0$

$$M_{p+1}(x_p, \mathrm{d}x_{p+1}) = \frac{1}{\sqrt{2\pi}\sigma_u} \exp\left[-(x_{p+1} - \phi x_p)^2 / (2\sigma_u^2)\right] \mathrm{d}x_{p+1} ,$$
$$g_p(x_p) = \frac{1}{\sqrt{2\pi}\sigma_v} \exp\left[-(y_p - x_p)^2 / (2\sigma_v^2)\right] .$$

Algorithm description Bias and variance of the double bootstrap Numerical application

Results for the LGSS model

Figure: Interacting versus independent island renormalized estimators.

Epsilon-Interaction Bootstrap Effective Sample Size Selection Numerical application

Outline

- 1 Introduction
 - Definitions
 - Examples
- 2 Island Bootstrap Approximation
- 3 The double bootstrap algorithm
 - Algorithm description
 - Bias and variance of the double bootstrap
 - Numerical application
- 4 Extensions
 - Epsilon-Interaction Bootstrap
 - Effective Sample Size Selection
 - Numerical application

Espilon-Interaction Bootstrap I

- ϵ -bootstrap interaction is a variant of the bootstrap, in which only a fraction of the particles are resampled.
- ϵ_n be a nonnegative constant such that $\epsilon_n ||g_n||_{\infty} \in [0, 1]$, where $||g_n||_{\infty} = \sup_{x_n \in \mathbb{E}_n} |g_n(x_n)|$.
- At iteration n, a particle X_n^i is kept with a probability equal to $\epsilon_n g_n(epart[i]n)$ or resampled with a probability $1 \epsilon_n g_n(X_n^i)$. Resampling a particle consists in replacing it by a particle selected at random in the current population with weights proportional to their potential $(g_n(X_n^1), \ldots, g_n(X_n^{N_1}))$.
- Then, each selected particle is independently updated according to the Markov kernel M_{n+1} .
- \blacksquare When $\epsilon_n=0,$ all the particles are resampled, which correspond to the bootstrap filter.

Epsilon-Interaction Bootstrap Effective Sample Size Selection Numerical application

Espilon-Interaction Bootstrap II

For any measure $\mu_n \in \mathcal{P}(\mathbb{E}_n)$, define S_{n,μ_n} the Markov kernel on $(\mathbb{E}_n, \mathcal{E}_n)$ given for $x_n \in \mathbb{E}_n$ and $A_n \in \mathcal{E}_n$ by

$$S_{n,\mu_n}(x_n,A_n) \stackrel{\text{def}}{=} \epsilon_n g_n(x_n) \delta_{x_n}(A_n) + (1 - \epsilon_n g_n(x_n)) \Psi_n(\mu_n)(A_n) ,$$

Define the Markov kernel $M_{n+1}(\mathbf{x}_n, d\mathbf{x}_{n+1})$ from \mathbb{E}_n into \mathbb{E}_{n+1} by

$$\boldsymbol{M}_{n+1}(\mathbf{x}_n, \mathrm{d}\mathbf{x}_{n+1}) \stackrel{\text{def}}{=} \prod_{1 \le i \le N_1} S_{n, \eta_n^{N_1}} M_{n+1}(x_n^i, \mathrm{d}x_{n+1}^i) .$$

• Consider the Feynman-Kac model associated to $({m M}_n,{m g}_n)_{n\geq 0}$

$$\begin{split} &\boldsymbol{\eta}_n(\boldsymbol{f}_n) = \boldsymbol{\gamma}_n(\boldsymbol{f}_n) / \boldsymbol{\gamma}_n(1) \\ &\boldsymbol{\gamma}_n(\boldsymbol{f}_n) = \mathbb{E} \left[\boldsymbol{f}_n(\mathbf{X}_n) \prod_{0 \leq p < n} \boldsymbol{g}_p(\mathbf{X}_p) \right] \;, \end{split}$$

where

$$\boldsymbol{g}_n(\mathbf{x}_n) \stackrel{\text{def}}{=} m(\mathbf{x}_n, g_n) = \frac{1}{N_1} \sum_{i=1}^{N_1} g_n(x_n^i) \; .$$

C. Dubarry, P. Del Moral, E. Moulines, C. Verge The Island particle models

Epsilon-Interaction Bootstrap Effective Sample Size Selection Numerical application

between Island ϵ -interaction

- Idea: Apply the ε-interaction at the island level
- Algorithm
 - Selection step: each island X_n^i is kept with a probability equal to $\epsilon_n \ g_n(X_n^i)$ or resampled with a probability $1 \epsilon_n \ g_n(X_n^i)$. Resampling an island consists in replacing it by an island selected at random in the current population with weights proportional to their average potential

$$(\boldsymbol{g}_n(\boldsymbol{X}_n^1)),\ldots,\boldsymbol{g}_n(\boldsymbol{X}_n^{N_1}).$$

- Mutation step: each selected island is updated independently according to the Markov transition M_{n+1} .
- It is not required to use ϵ -interaction both within and across the islands.

Epsilon-Interaction Bootstrap Effective Sample Size Selection Numerical application

Effective Sample Size Interaction

- Idea: Perform the selection step of the current particles only when the importance weights do not satisfy some appropriately defined criterion.
- Contrary to the bootstrap filter, we now keep both the particles and the weights.
- \blacksquare For a weighted sample $\{(w_n^i, x_n^i)\}_{i=1}^{N_1},$ the criterion

$$\left(\sum_{i=1}^{N_1} w_n^i g_n(x_n^i)\right)^2 / \sum_{i=1}^{N_1} \left(w_n^i g_n(x_n^i)\right)^2$$

is the effective sample size (ESS).

 Roughly speaking, the ESS is the way to quantify the dependence in the particle swarm.

Epsilon-Interaction Bootstrap Effective Sample Size Selection Numerical application

Effective Sample Size Interaction

- **1** When the ESS is less than αN_1 , for some $\alpha \in (0, 1)$, the particles are multinomially resampled with probabilities proportional to their weights times their potential functions; the weights are all reset to 1.
- 2 When the ESS is greater than αN_1 , then the weights are simply multiplied by the potential function
- 3 The particle positions are then updated according to the transition kernel ${\cal M}_{n+1}.$

This algorithm defines a Markov chain $\{X_n\}_{n>0}$ where for each $n \in \mathbb{N}$,

$$\boldsymbol{X}_n = \left[(X_n^1, \omega_n^1), \dots, (X_n^{N_1}, \omega_n^{N_1}) \right] \in \boldsymbol{\mathbb{E}}_n ,$$

Epsilon-Interaction Bootstrap Effective Sample Size Selection Numerical application

ESS: particle approximation

 N_1 -particle approximations of the measures η_n and γ_n

$$\eta_n^{N_1}(f_n) \stackrel{\text{def}}{=} m(\boldsymbol{X}_n, f_n) = \frac{1}{\sum_{i=1}^{N_1} \omega_n^i} \sum_{i=1}^{N_1} \omega_n^i f_n\left(X_n^i\right) ,$$
$$\gamma_n^{N_1}(f_n) \stackrel{\text{def}}{=} \eta_n^{N_1}(f_n) \prod_{0 \le p < n} \eta_p^{N_1}(g_p) .$$

Theorem

For any $f_n \in \mathcal{B}_b(\mathbb{E}_n)$, $\gamma_n^{N_1}(f_n)$ is an unbiased estimator of $\gamma_n(f_n)$:

$$\mathbb{E}\left[\gamma_n^{N_1}(f_n)\right] = \mathbb{E}\left[\eta_n^{N_1}(f_n) \prod_{0 \le p < n} \eta_p^{N_1}(g_p)\right] = \mathbb{E}\left[f_n(X_n) \prod_{0 \le p < n} g_p(X_p)\right] \,.$$

Epsilon-Interaction Bootstrap Effective Sample Size Selection Numerical application

ESS: Feynman-Kac approximation

For
$$\mathbf{x}_n = (x_n^1, w_n^1, \cdots, x_n^{N_1}, w_n^{N_1}) \in \mathbf{E}_n$$
 we set

$$\boldsymbol{g}_{\boldsymbol{n}}(\mathbf{x}_n) \stackrel{\text{def}}{=} m(\mathbf{x}_n, g_n) = \frac{1}{\sum_{i=1}^{N_1} w_n^i} \sum_{i=1}^{N_1} w_n^i g_n\left(x_n^i\right) \ .$$

• The Feynman-Kac associated to $\{({m M}_n,{m g}_n)\}_{n\geq 0}$ is

$$egin{aligned} &oldsymbol{\eta}_n(oldsymbol{f}_n) = oldsymbol{\gamma}_n(oldsymbol{f}_n) / oldsymbol{\gamma}_n(1) \ &oldsymbol{\gamma}_n(oldsymbol{f}_n) = \mathbb{E}\left[oldsymbol{f}_n(\mathbf{X}_n) \ \prod_{0 \leq p < n} oldsymbol{g}_p(\mathbf{X}_p)
ight] \,, \end{aligned}$$

Epsilon-Interaction Bootstrap Effective Sample Size Selection Numerical application

Feynman-Kac approximation

Since
$$\boldsymbol{g}_n(\boldsymbol{X}_n) = \eta_n^{N_1}(g_n)$$
, for any \boldsymbol{f}_n of the form
 $\boldsymbol{f}_n(\mathbf{x}_n) = \left(\sum_{i=1}^{N_1} w_n^i\right)^{-1} \sum_{i=1}^{N_1} w_n^i f_n\left(x_n^i\right)$ where $f_n \in \mathcal{B}_b(\mathbb{E}_n)$,
 $\mathbb{E}\left[f_n(X_n) \prod_{0 \le p < n} g_p(X_p)\right] = \mathbb{E}\left[\boldsymbol{f}_n(\mathbf{X}_n) \prod_{0 \le p < n} \boldsymbol{g}_p(\mathbf{X}_p)\right]$,

Therefore, the unbiasedness theorem implies

 $\boldsymbol{\gamma}_{n}(\boldsymbol{f}_{n}) = \gamma_{n}(f_{n})$ $\boldsymbol{\eta}_{n}(\boldsymbol{f}_{n}) = \eta_{n}(f_{n}) .$

C. Dubarry, P. Del Moral, E. Moulines, C. Verge The Island particle models

Between island ESS: Principles

- Idea Apply the ESS at the island level.
- Let $(X_n^1, \ldots, X_n^{N_2}) \in \mathbb{E}_n^{N_2}$ be a population of N_2 islands each of N_1 individuals.
- We now associate to each island a weight denoted Ω_n^i , for $i \in \{1, \dots, N_2\}$.
- At each iteration, we will assess the degeneracy of the population of islands using the ESS (at the island level !)

The N_2 -particle approximation of the measures $\boldsymbol{\eta}_n$ and $\boldsymbol{\gamma}_n$ is given by

$$\begin{split} \boldsymbol{\eta}_n^{N_2}(\boldsymbol{f}_n) &\stackrel{\text{def}}{=} \frac{1}{\sum_{i=1}^{N_2} \Omega_n^i} \sum_{i=1}^{N_2} \Omega_n^i \boldsymbol{f}_n(\boldsymbol{X}_n^i) ,\\ \boldsymbol{\gamma}_n^{N_2}(\boldsymbol{f}_n) &\stackrel{\text{def}}{=} \boldsymbol{\eta}_n^{N_2}(\boldsymbol{f}_n) \prod_{0 \leq p < n} \boldsymbol{\eta}_p^{N_2}(\boldsymbol{g}_p) = \boldsymbol{\eta}_n^{N_2}(\boldsymbol{f}_n) \boldsymbol{\gamma}_n^{N_2}(1) . \end{split}$$

Epsilon-Interaction Bootstrap Effective Sample Size Selection Numerical application

Between island ESS: algorithm

Selection step:

1 if the ESS criterion

$$\left(\sum_{i=1}^{N_2} \Omega_n^i \boldsymbol{g}_n(\boldsymbol{X}_n^i)\right)^2 / \sum_{i=1}^{N_2} \left(\Omega_n^i \boldsymbol{g}_n(\boldsymbol{X}_n^i)\right)^2$$

is larger than βN_2 for one $\beta \in (0,1),$ the islands are kept and the weights are updated:

$$\Omega_{n+1}^i = \Omega_n^i \boldsymbol{g}_n(\boldsymbol{X}_n^i)$$

2 otherwise, the islands are resampled multinomially with probability proportional to $\{\Omega_n^i g_n(X_n^i)\}_{i=1}^{N_2}$ and the weights are all reset to 1.

• Mutation step: Each selected island is updated independently according to the Markov transition M_{n+1} .

Epsilon-Interaction Bootstrap Effective Sample Size Selection Numerical application

Results

Figure: LGM model. Comparison of different interactions across the islands. The bootstrap is used within each island for the LGM (1) ESS/independent; (2) ESS/ESS; (3) ESS/Bootstrap; (4) ESS/($1/g_n$)-bootstrap; (5) ESS/essup_{$\eta_p^{N_1}$}(g_n)-bootstrap

Epsilon-Interaction Bootstrap Effective Sample Size Selection Numerical application

Number of interactions

N_2	1	10	100	1000
1	100	40.04	26.08	13.50
10	100	81.90	78.56	77.54
100	100	97.26	95.86	95.02
1000	100	99.86	100	100

Table: Gain in the number of interactions between islands for the ESS within ESS estimator as a percentage of the one of the ESS within bootstrap estimator in the LGM.