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Notations

(En, En)n≥0: a sequence of measurable sets.

(Xn)n≥0: a non-homogenous Markov chain with initial distribution η0,
and Markov kernels (Mn)n≥1.

(gn)n≥0: a sequence of potential functions, gn : En 7→ R+

The Feynman-Kac �ow associated to (Mn, gn)n≥0 is de�ned by

ηn(fn)
def
= γn(fn)/γn(1) ,

γn(fn)
def
= E

fn(Xn)
∏

0≤p<n

gp(Xp)

 .
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Nonlinear State-Space models or HMM

An HMM (Xk, Yk)k≥0 is a Markov process such that the conditional
distribution of (Xk, Yk) given (Xi, Yi)0≤i≤k−1 only depends on Xk−1.

Bayesian Network (Directed Graphical Model) Representation
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Yk Yk+1
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Transition Kernel/ Likelihood

The state dynamic is represented by a transition kernel, Mk, de�ned by

P(Xk+1 ∈ A | Xk = xk) = Mk(xk, A) .

The measurement equation is speci�ed by

P(Yk ∈ A | Xk = xk) = Gk(xk, A) =

∫
A

g(xk, y)ν(dy) ,

Filtering relates to the task of inferring the state Xk from the observations
Y0:k = Y0, . . . , Yk.

The �ltering distribution is an example of Feynman-Kac model with
transition Mk [the prior transition] and potential gk(x) = g(x, Yk), the
likelihood of the observations.
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Stochastic Optimization

1 Problem: Find x∗ = maxx∈X V (x) where V is a function on X.
2 Let (βn)n≥0 be a nondecreasing sequence of positive numbers such that

limn→∞ βn =∞. and let (Mn)n≥0 be a sequence of Markov kernels such
that µnMn = µn where

µn(dx) ∝ e−βnV (x)λ(dx) and gn(x) = e−(βn+1−βn)V (x)

3 Then, ηn = µn ∝ exp(−βnV ) which (under appropriate assumptions)
converge weakly to a distributed to distribution concentrated on the set of
local maxima.
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Some Other Applications of Feynman-Kac Formulae

Signal processing and automatic control
Open loop optimal control, optimal regulation.
Interacting Kalman-Bucy �lters.
Stochastic and adaptive grid approximation-models

Statistics/Probability:
Markov chains with constraints (w.r.t terminal values, visiting regions,
constraints simulation problems,...)
Analysis of Boltzmann-Gibbs type distributions (simulation, partition
functions, localization models...).
Combinatorial optimization, counting, graph-coloring

Rare events analysis:
Multisplitting and branching particle models (Restart type methods).
Importance sampling and twisted probability measures.
Genealogical tree based simulations (default tree sampling models).
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Feynman-Kac Flow

The sequence (ηn)n≥0 satis�es the recursion:

ηn+1(An+1) =

∫
ηn(dxn)gn(xn)Mn+1(xn,dxn+1)∫

ηn(dxn)gn(xn)

= Ψn(ηn)Mn+1(An+1) ,

where Ψn : P(En)→ P(En) is the non-linear mapping:

Ψn(ηn)(An)
def
=

1

ηn(gn)

∫
An

gn(xn) ηn(dxn) , An ∈ En .
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Bootstrap Particle Approximation I

Denote by N1 the number of particles in a given island.

The evolution of the population of an island Xn = (X1
n, . . . , X

N1
n ) is in

two steps
1 the particles are multinomially resampled with probabilities proportional to

their potential {gn(Xi
n)}N1

i=1;
2 new particle positions are then sampled conditionally independently from

the prior kernel Mn+1.

(
Xi
n

)
selection

−−−−−−−→
(
X̂i
n

)
mutation

−−−−−−−→
(
Xi
n+1

)
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Bootstrap Particle Approximation II

The island evolution de�nes a Markov chain speci�ed by the transition Mn+1

from (EEEn,En) = (EN1
n , E⊗N1

n ) to (EEEn+1,En+1) = (EN1
n , E⊗N1

n ) by

Mn+1(Xn,An+1) =
∏

1≤i≤N1

N1∑
j=1

gn(Xj
n)∑N1

`=1 gn(X`
n)
Mn+1(Xj

n, A
j
n+1)

=
∏

1≤i≤N1

Ψn(m[Xn])Mn+1(Ain+1) ,

where m[Xn] denotes the empirical measure of an island

m[Xn] = m(X1
n, . . . , X

N1
n )

def
=

1

N1

N1∑
i=1

δXi
n
.
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Particle approximation

Denote by {Xn = (X1
n, . . . , X

N1
n )}n≥0 a Markov Chain with initial

distribution η0
def
= η⊗N1

0 and transition kernel Mn+1.

The island approximation of the sequences Feynman-Kac measures
{(ηn, γn)}n≥1 is given by

ηN1
n (fn)

def
= m(Xn, fn)

γN1
n (fn)

def
= ηN1

n (fn)
∏

0≤p<n

ηN1
p (gp) .
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Unbiasedness of the particle approximation

Theorem

For any fn ∈ Bb(En), γN1
n (fn) is an unbiased estimator of γn(fn).
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Theorem

For any fn ∈ Bb(En), γN1
n (fn) is an unbiased estimator of γn(fn).

E
[
ηN1
p (fp)

∣∣∣FN1
p−1

]
=

1

N1

N1∑
i=1

E
[
fp(X

i
p)
∣∣∣FN1
p−1

]
= E

[
fp(X

1
p)
∣∣∣FN1
p−1

]
=

∑N1
i=1 gp−1(Xi

p−1)Mpfp(X
i
p−1)∑N1

i=1 gp−1(Xi
p−1)

=
ηN1
p−1(Qpfp)

ηN1
p−1(gp−1)

,

where Qp(xp−1, dxp) = gp−1(xp−1)Mp(xp−1, dxp).
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Theorem

For any fn ∈ Bb(En), γN1
n (fn) is an unbiased estimator of γn(fn).

E
[
γN1
n (fn)

]
= E

E [ηN1
n (fn)

∣∣∣FN1
n−1

] ∏
0≤p<n

ηN1
p (gp)


= E

ηN1
n−1(Qnfn)

ηN1
n−1(gn−1)

∏
0≤p<n

ηN1
p (gp)


= E

ηN1
n−1(Qnfn)

∏
0≤p<n−1

ηN1
p (gp)

 .

C. Dubarry, P. Del Moral, E. Moulines, C. Verge The Island particle models



Introduction
Island Bootstrap Approximation
The double bootstrap algorithm

Extensions

The island Feynman-Kac model

For xn = (x1n, · · · , xN1
n ) ∈ EN1

n de�ne the sample averaged potential

gn(xn)
def
=

1

N1

N1∑
i=1

gn(xin) .

The Feynman-Kac model associated to (Mn, gn)n≥0 is given by

ηn(fn) = γγγn(fn)/γγγn(1)

γγγn(fn) = E

fn(Xn)
∏

0≤p<n

gp(Xp)

 ,

where (Xn)n≥0 is a Markov chain with transition (Mn)n≥0.
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Unbiasedness

Since gn(Xp) = ηN1
n (gp), the unbiasedness property implies that for any fn of

the form fn(xn) = N−1
1

∑N1
i=1 fn(xin)

E

fn(Xn)
∏

0≤p<n

gp(Xp)

 = E

fn(Xn)
∏

0≤p<n

gp(Xp)

 ,

or equivalently

γγγn(fn) = γn(fn) and ηn(fn) = ηn(fn) .

For functions de�ned as sample mean, the Feynman-Kac models (ηn, γn)n≥0

and (ηn,γγγn)n≥0 coincide !
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Double Bootstrap

Idea: we may apply the interacting particle system approximation of the
Feynman-Kac semigroups both within each island but also between islands.

We now describe the double bootstrap algorithm where the bootstrap
algorithm is applied both within an island but also across the islands.

Of course, many other options are available (more to come !)
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Feynman-Kac at the island level

De�ne by P(EEEn) the set of probabilities measures on (EEEn,En).

The sequence of measures (ηn)n≥0 satis�es the following recursion

ηn+1 = Ψn(ηn)Mn+1 ,

where Ψn : P(EEEn)→ P(EEEn) is de�ned by

Ψn(ηn)(dx)
def
=
gn(x) ηn(dx)

ηn(gn)
.
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The double bootstrap algorithm

(
Xi
n

)
selection

−−−−−−−→
(
X̂
i

n

)
mutation

−−−−−−−→
(
Xi
n+1

)
Let N2 be the number of interacting islands.

During the selection stage, we select randomly N2 islands
(
X̂
i

n

)
1≤i≤N2

among the current islands
(
Xi
n

)
1≤i≤N2

∈ EEEN2
n with probability

proportional to the empirical mean of the individuals in each island

gn(Xi
n) = N−1

1

N1∑
j=1

gn(Xi,j
n ) , 1 ≤ i ≤ N2 .

During the mutation transition, selected islands (X̂
i

n)N2
i=1 evolve randomly

to a new con�guration Xi
n+1 according to the Markov transition Mn+1.
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The double bootstrap algorithm

1: for p from 0 to n− 1 do

2: selection between islands: Sample Ip = (Iip)
N2
i=1 multinomially with

proba. prop. to
(

1
N1

∑N1
j=1 gp(X

i,j
p )
)N2

i=1
.

3: for i from 1 to N2 do

4: selection within island: Sample J ip = (J i,jp )N1
j=1 multinomially with

proba. prop. to

(
gp(X

Iip,j
p )

)N1

j=1

.

5: For 1 ≤ j ≤ N1, sample independently Xi,j
p+1 according to

Mp+1(X
Iip,J

j
p

p , ·).
6: end for

7: end for
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Bootstrap approximation: bias and variance

Theorem

For any time horizon n ≥ 0 and any bounded function fn ∈ Bb(En), we have

lim
N1→∞

N1E
[
ηN1
n (fn)− ηn(fn)

]
= Bn(fn) ,

lim
N1→∞

N1Var
(
ηN1
n (fn)

)
= Vn(fn) ,

where Bn(fn) and Vn(fn) can be computed explicitly.
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Double bootstrap approximation: bias and variance

Theorem

For any time horizon n ≥ 0 and any fn ∈ Bb(En), we have

lim
N1→∞

lim
N2→∞

N1N2E
[
ηN2
n (m(·, fn))− ηn(m(·, fn))

]
= Bn(fn) + B̃n(fn) ,

lim
N1→∞

lim
N2→∞

N1N2Var
(
ηN2
n (m(·, fn))

)
= Vn(fn) + Ṽn(fn) ,

where Bn(fn), B̃n(fn), Vn(fn), Ṽn(fn) can be computed explicitly.

The rate of the interacting island (N2 islands each with N1 individuals) is
the same as the one of the single island model with N1N2 particles.

Even though the constant terms may be worst in the interacting island
model, it allows to use parallel implementations.
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Independent islands

Theorem

For any time horizon n ≥ 0 and any fn ∈ Bb(En), we have

lim
N1→∞

N1

{
E
[
η̃N2
n (m(·, fn))

]
− ηn(fn)

}
= Bn(fn) ,

lim
N1→∞

N1N2Var
(
η̃N2
n (m(·, fn))

)
= Vn(fn) ,

where Bn(fn) and Vn(fn) are the same than for the single island model.

Although the variance of the particle approximation is inversely proportional to
N1N2, the bias is independent of N2 and is inversely proportional to N1.
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How to choose between interacting and independent islands?

Independent islands Interacting islands

Squared bias
Bn(fn)2

N2
1

(
Bn(fn) + B̃n(fn)

)2
N2

1N
2
2

Variance
Vn(fn)

N1N2

Vn(fn) + Ṽn(fn)

N1N2

Sum
Vn(fn)

N1N2
+
Bn(fn)2

N2
1

Vn(fn) + Ṽn(fn)

N1N2

Vn(fn)

N1N2
+
Bn(fn)2

N2
1

<
Vn(fn) + Ṽn(fn)

N1N2
⇔ N1 >

Bn(fn)2

Ṽn(fn)
N2 .
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Example

1 Linear Gaussian Model

Xp+1 = φXp + σuUp ,

Yp = Xp + σvVp ,

Computing the predictive distribution of the state Xn given the
observations Y0:n−1 = y0:n−1 up to time n− 1 can be cast into the
framework of Feynman-Kac model by setting for all p ≥ 0

Mp+1(xp,dxp+1) =
1√

2πσu
exp

[
−(xp+1 − φxp)2/(2σ2

u)
]

dxp+1 ,

gp(xp) =
1√

2πσv
exp

[
−(yp − xp)2/(2σ2

v)
]
.
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Results for the LGSS model

Figure: Interacting versus independent island renormalized estimators.
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Espilon-Interaction Bootstrap I

ε-bootstrap interaction is a variant of the bootstrap, in which only a
fraction of the particles are resampled.

εn be a nonnegative constant such that εn ‖gn‖∞ ∈ [0, 1], where
‖gn‖∞ = supxn∈En

|gn(xn)|.
At iteration n, a particle Xi

n is kept with a probability equal to
εn gn(epart[i]n) or resampled with a probability 1− εn gn(Xi

n).
Resampling a particle consists in replacing it by a particle selected at
random in the current population with weights proportional to their
potential (gn(X1

n), . . . , gn(XN1
n )).

Then, each selected particle is independently updated according to the
Markov kernel Mn+1.

When εn = 0, all the particles are resampled, which correspond to the
bootstrap �lter.

C. Dubarry, P. Del Moral, E. Moulines, C. Verge The Island particle models
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Espilon-Interaction Bootstrap II

For any measure µn ∈ P(En), de�ne Sn,µn the Markov kernel on (En, En)
given for xn ∈ En and An ∈ En by

Sn,µn(xn, An)
def
= εn gn(xn)δxn(An) + (1− εn gn(xn)) Ψn(µn)(An) ,

De�ne the Markov kernel Mn+1(xn, dxn+1) from EEEn into EEEn+1 by

Mn+1(xn,dxn+1)
def
=

∏
1≤i≤N1

S
n,η

N1
n
Mn+1(xin, dx

i
n+1) .

Consider the Feynman-Kac model associated to (Mn, gn)n≥0

ηn(fn) = γγγn(fn)/γγγn(1)

γγγn(fn) = E

fn(Xn)
∏

0≤p<n

gp(Xp)

 ,

where

gn(xn)
def
= m(xn, gn) =

1

N1

N1∑
i=1

gn(xin) .
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between Island ε-interaction

Idea: Apply the ε-interaction at the island level

Algorithm
Selection step: each island Xi

n is kept with a probability equal to
εn gn(Xi

n) or resampled with a probability 1− εn gn(Xi
n). Resampling an

island consists in replacing it by an island selected at random in the current
population with weights proportional to their average potential

(gn(X1
n)), . . . , gn(XN1

n ).
Mutation step: each selected island is updated independently according to
the Markov transition Mn+1.

It is not required to use ε-interaction both within and across the islands.

C. Dubarry, P. Del Moral, E. Moulines, C. Verge The Island particle models



Introduction
Island Bootstrap Approximation
The double bootstrap algorithm

Extensions

Epsilon-Interaction Bootstrap
E�ective Sample Size Selection
Numerical application

E�ective Sample Size Interaction

Idea: Perform the selection step of the current particles only when the
importance weights do not satisfy some appropriately de�ned criterion.

Contrary to the bootstrap �lter, we now keep both the particles and the
weights.

For a weighted sample {(win, xin)}N1
i=1, the criterion(

N1∑
i=1

wingn(xin)

)2

/

N1∑
i=1

(
wingn(xin)

)2
is the e�ective sample size (ESS).

Roughly speaking, the ESS is the way to quantify the dependence in the
particle swarm.
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E�ective Sample Size Interaction

1 When the ESS is less than αN1, for some α ∈ (0, 1), the particles are
multinomially resampled with probabilities proportional to their weights
times their potential functions; the weights are all reset to 1.

2 When the ESS is greater than αN1, then the weights are simply multiplied
by the potential function

3 The particle positions are then updated according to the transition kernel
Mn+1.

This algorithm de�nes a Markov chain {Xn}n≥0 where for each n ∈ N,

Xn =
[
(X1

n, ω
1
n), . . . , (XN1

n , ωN1
n )
]
∈ EEEn ,

C. Dubarry, P. Del Moral, E. Moulines, C. Verge The Island particle models
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ESS: particle approximation

N1-particle approximations of the measures ηn and γn

ηN1
n (fn)

def
= m(Xn, fn) =

1∑N1
i=1 ω

i
n

N1∑
i=1

ωinfn
(
Xi
n

)
,

γN1
n (fn)

def
= ηN1

n (fn)
∏

0≤p<n

ηN1
p (gp) .

Theorem

For any fn ∈ Bb(En), γN1
n (fn) is an unbiased estimator of γn(fn):

E
[
γN1
n (fn)

]
= E

ηN1
n (fn)

∏
0≤p<n

ηN1
p (gp)

 = E

fn(Xn)
∏

0≤p<n

gp(Xp)

 .
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ESS: Feynman-Kac approximation

For xn = (x1n, w
1
n, · · · , xN1

n , wN1
n ) ∈ EEEn we set

gn(xn)
def
= m(xn, gn) =

1∑N1
i=1 w

i
n

N1∑
i=1

wingn
(
xin

)
.

The Feynman-Kac associated to {(Mn, gn)}n≥0 is

ηn(fn) = γγγn(fn)/γγγn(1)

γγγn(fn) = E

fn(Xn)
∏

0≤p<n

gp(Xp)

 ,
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Feynman-Kac approximation

Since gn(Xn) = ηN1
n (gn), for any fn of the form

fn(xn) =
(∑N1

i=1 w
i
n

)−1∑N1
i=1 w

i
nfn

(
xin
)
where fn ∈ Bb(En),

E

fn(Xn)
∏

0≤p<n

gp(Xp)

 = E

fn(Xn)
∏

0≤p<n

gp(Xp)

 ,

Therefore, the unbiasedness theorem implies

γγγn(fn) = γn(fn)

ηn(fn) = ηn(fn) .
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Between island ESS: Principles

Idea Apply the ESS at the island level.

Let (X1
n, . . . ,X

N2
n ) ∈ EEEN2

n be a population of N2 islands each of N1

individuals.

We now associate to each island a weight denoted Ωin, for i ∈ {1, . . . , N2}.
At each iteration, we will assess the degeneracy of the population of
islands using the ESS (at the island level !)

The N2-particle approximation of the measures ηn and γγγn is given by

ηN2
n (fn)

def
=

1∑N2
i=1 Ωin

N2∑
i=1

Ωinfn(Xi
n) ,

γγγN2
n (fn)

def
= ηN2

n (fn)
∏

0≤p<n

ηN2
p (gp) = ηN2

n (fn) γγγN2
n (1) .
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Between island ESS: algorithm

Selection step:
1 if the ESS criterionN2∑

i=1

Ωingn(Xi
n)

2

/

N2∑
i=1

(
Ωingn(Xi

n)
)2

is larger than βN2 for one β ∈ (0, 1), the islands are kept and the weights
are updated:

Ωin+1 = Ωingn(Xi
n)

;
2 otherwise, the islands are resampled multinomially with probability

proportional to {Ωingn(Xi
n)}N2

i=1 and the weights are all reset to 1.

Mutation step: Each selected island is updated independently according to
the Markov transition Mn+1.
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Results
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Figure: LGM model. Comparison of di�erent interactions across the islands. The
bootstrap is used within each island for the LGM (1) ESS/independent; (2) ESS/ESS;
(3) ESS/Bootstrap; (4) ESS/(1/gn)-bootstrap; (5) ESS/essup

η
N1
p

(gn)-bootstrap
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Number of interactions

PPPPPPPN1

N2
1 10 100 1000

1 100 40.04 26.08 13.50
10 100 81.90 78.56 77.54
100 100 97.26 95.86 95.02
1000 100 99.86 100 100

Table: Gain in the number of interactions between islands for the ESS within ESS
estimator as a percentage of the one of the ESS within bootstrap estimator in the
LGM.

C. Dubarry, P. Del Moral, E. Moulines, C. Verge The Island particle models


	Introduction
	Definitions
	Examples

	Island Bootstrap Approximation
	The double bootstrap algorithm
	Algorithm description
	Bias and variance of the double bootstrap
	Numerical application

	Extensions
	Epsilon-Interaction Bootstrap
	Effective Sample Size Selection
	Numerical application


