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the general problem

When dealing with statistical models that involve a huge-dimensional
space, it is convenient or necessary to

• reduce the dimension by setting at zero the probability of
appropriate subspaces.

• At the same time, preserve desirable properties of the involved
probability laws.

Here, the large-dimensional space is the space of all partitions of
{1, 2, . . . , n}. Random partitions appear in many contexts, combinatorics,
genetics, clustering, nonparametric inference ...

We will illustrate the issue by using a simple problem of Bayesian

nonparametric curve fitting through Dirichlet process mixtures.
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Outline

1 general problem: introducing restrictions on random partitions

2 illustration: Bayesian curve fitting
• Dirichlet process-based mixture models
• Restricted DPM

3 Examples



Random partitions

Random partitions appear in many contexts, combinatorics, genetics,
clustering, nonparametric inference, ...
Partition ρn = (s1, . . . , sn) of {1, 2, . . . , n}
e.g., n = 6, (s1, . . . , sn) = (1, 1, 2, 1, 3, 2) defines the partition
ρn = ((1, 2, 4), (3, 6), (5))

In many problems we can assign p(x1:n | ρn).
Bayesian inference on ρn gives a prior π(ρn), which combined with the
likelihood by Bayes rule, gives the posterior

π(ρn | x1:n) ∝ p(x1:n | ρn)π(ρn).

Yet, often the likelihood is intractable; and computing the normalizing

constant involves a huge sum. Thus, explore the partition space Pn e.g.

via MCMC.



Problems

• computations. Partition space Pn is huge, thus π(ρn | x1:n)
can be very spread out, and MCMC can visit only a subset of
partitions, and each partition only once..

• methodological. For modeling reasons, one may want to
incorporate information on what are desirable and undesirable
partitions. But since Pn is huge, this info will be dramatically
diluted in the prior and in the posterior.



example

In the example of curve fitting that we will discuss, one wants to
introduce an ordering constraint.
• Number of ways to partition the n subjects:

Bn =
n∑

k=1

Sn,k , a Bell number

Sn,k =
1

k!

k∑
j=0

(−1)j
(

k
j

)
(k− j)n a Stirling number of the second kind.

• Under a ordering constraint, number of ways to partition the
n subjects:

n∑
k=1

(
n − 1
k − 1

)
= 2n−1.

• Example: if n=10, B10 = 115, 975 and 2n−1 = 512, 0.44% of
the total partitions, and if n = 100, the percentage of
partitions under this constraint is less than 10−83% of the
total partitions.



our proposal

• Strictly restrict the partition space by putting the probability
of undesirable partitions to zero.

• the problem is not so trivial as in restricting the partition
space we may introduce undesirable bias in the prior on ρn.
Thus, we want to restrict but at the same time preserve good
properties of the prior.

We illustrate these issues in Bayesian curve fitting.
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2. Bayesian curve fitting

Given
Yi = m(xi ) + εi , i = 1, . . . , n,

where generally εi
i.i.d∼ N(0, σ2), the problem is estimating the unknown

curve m(x).

In a Bayesian approach, this is solved by giving a prior on m(·); then the
curve estimate at xn+1 w.r.t. quadratic loss corresponds to the point
prediction at xn+1

m̂(xn+1) = E (Yn+1 | x1:n, y1:n, xn+1).

Popular priors are based on Dirichlet process mixtures. But we find that

these models may have poor prediction properties and restrictions on the

involved partition of subjects into mixture’s components are necessary.



Dirichlet-based mixture models

The general form of a Dirichlet-based mixture model for regression is

Y |x ,w , µ, σ2 indep∼
∞∑
j=1

wj(x) N(µj(x), σ2
j (x))

This implies a flexible expression for m(·)

m(x) = E[Y |x ,w , µ, σ2] =
∞∑
j=1

wj(x) µj(x),

where m(x) is modeled through

• a collection of curves (basis functions) µj(x), j = 1, 2, . . .

• weights wj(x) that globally (if wj(x) ≡ wj) or locally (if wj(x)
depends on x) select the curve µj ”in use”.

It is natural to ask for simple basis functions µj and local selection of µj

(somehow such as for splines with random knots). Yet the most popular

BNP models do not achieve this.



Dirichlet process-based mixture models

• Dirichlet process mixture models (DPM) assume linear ’basis
functions’ µj(x) = β∗j x and constant weights wj . Thus

m(x) = E[Y |x ,w , µ, σ2] =
∞∑
j=1

wj β
∗
j x .

This global selection of the µj may lead to poor prediction.

• joint DPM imply covariate dependent weights wj(x). This improves
prediction, that is however still obtained by unnecessarily averaging
on undesirable partitions.

We propose a restricted partition prior, that can improve computations

and prediction.



Dirichlet process mixture models

A DPM is defined as

Yi |xi , βi , σ2
i

indep∼ N(β′i x i , σ
2
i ),

βi , σ
2
i |P

i.i.d∼ P,

P ∼ DP(αP0).

base measure P0: conjugate Normal-Inverse Gamma prior(β0,C
−1, a, b).

From well known properties of the DP, P is discrete with probability one,
and integrating the parameters out

Yi |xi ,w , µ, σ2 indep∼
∞∑
j=1

wj(xi ) N(β∗j xi , σ
2
j (xi )),

thus

m(x) = E[Y |x ,w , µ, σ2] =
∞∑
j=1

wj β
∗
j x .



random partition

From the Pólya sequence scheme characterization of the DP, the model
induces a random partition of the individual coefficients
(β1, σ

∗
i ), i = 1, . . . , n, defined as ρn = (s1, . . . , sn) where s1 = 1;

s2 = 1 if β2 = β1(= β∗1 ) or s2 = 2 if β2 is a new value β∗2 , and so on.

The prior probability of a partition in k clusters of sizes n1, . . . , nk results

p(ρn) =
αk

α[n]

k∏
j=1

(nj − 1)!,

where α[n] = α(α + 1) · · · (α + n − 1). It does not depend on x1:n.

Given the partition, clusters are assumed independent and simple linear
regression is used inside clusters:

Y1, . . .Yn | x1:n, ρn ∼
k∏

j=1

∏
i :si=j

N(yi | β∗j xi , σ2
i );



Inference and prediction

• Posterior of ρn:

p(ρn|y , x) ∝ αk
k∏

j=1

(nj − 1)!
k∏

j=1

p(yi : i ∈ Sj |xi : i ∈ Sj),

prior × the product of marginal likelihood of obs in cluster Sj .

• Given the partition, clusters are independent, so that conditional
prediction of Y at xn+1 is

E[Y |xn+1, y , x , ρn] =
k+1∑

sn+1=1

E [Yn+1|xn+1, y , x , ρn, sn+1]p(sn+1 | x , y , xn+1, ρn)

=
α

α + n
β′0xn+1 +

k∑
j=1

nj
α + n

β̂′jxn+1,

where β̂j = E (β∗j | x , y , ρn) = (C + X ′j Xj)
−1(Cβ0 + X ′j y j

). Note

that p(ρn|y , x) doesn’t depend on xn+1: the prediction (curve
estimate) is linear.



DP mixture of linear regression

more an exploratory tool



DP mixture of linear regression

more an exploratory tool



DP mixture of linear regression

but prediction generally uninformative



a more dramatic example
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BNP regression

we exclude multiple behavior for a given x



BNP regression

DP and ’clustering’ is used for flexible regression
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BNP regression

DP and ’clustering’ is used for flexible regression:
locally select a curve (here, a line) from the collection of available
curves (here, β′ix i , i = 1, 2, . . ..)

then the partition should depend on x , and if x ≈ x ′, we expect
that E (Y | x) ≈ E (Y | x ′), i.e., same cluster.

DDP and joint DP mixtures go in this direction: the random
partition depends on covariates x , and the cluster allocation of
Yn+1 depends on xn+1.

However, we still unnecessarily give positive probability mass to
’bad’ partitions, which still affect prediction.
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Joint DP mixtures

• Model (Müller et al.(1996)):

Yi |xi , βi , σ2i
indep∼ N(β′ix i , σ

2
i ),

Xi , |µi ,Σi
indep∼ N(µi ,Σi ),

βi , σ
2
i , µi ,Σi |P

i .i .d∼ P,

P ∼ DP(αP0Y × P0X ).

⇒ Yi |xi ,w , β, σ2
indep∼

∞∑
j=1

wj(xi )N(β∗j x i , σ
2∗
j ),

where

wj(x) =
wjN(xi ;µ

∗
j ,Σ

∗
j )∑∞

j=1 wjN(xi ;µ∗j ,Σ
∗
j )
.



Joint DP mixtures: Random partition

• Prior for the random partition now depends on x1:n:

p(ρn|x1:n) ∝ αk
k∏

j=1

(nj − 1)! p0(xi ∈ Sj),

where p0(xi ∈ Sj) =
∫ ∏

i :si=j N(xi ;µ,Σ)dP0X (µ,Σ).

• Posterior of ρn given x = x1:n, y = y1:n:

p(ρn|y , x) ∝ αk
k∏

j=1

(nj − 1)! p(xi ∈ Sj)p(yi ∈ Sj |(xi ∈ Sj)).

prior × product of clusters’ marginal joint likelihoods of (xi , yi )



Joint DP mixtures: Prediction

• Prediction of yn+1

E[Yn+1|xn+1, y , x ] = (1)∑
ρn∈Pn

(
E[Yn+1|xn+1, y , x , ρn]

p(xn+1|ρn, y , x)

p(xn+1|y , x)

)
p(ρn|y , x).

• Inner term of (1) is

α

c
p0(xn+1)β′0xn+1 +

k∑
j=1

nj
c
pj(xn+1|xi ∈ Sj)β̂

′
jxn+1

where pj(xn+1|xi ∈ Sj) =
∫
N(xn+1;µ,Σ)dP0X (µ,Σ|xi ∈ Sj).

This favors allocation of Yn+1 in clusters for which the predictive
density pj(xn+1 | xi ∈ Sj) is higher. However, for prediction we still
unnecessarily average on ’bad’ partitions..



Restricted DP mixtures

• In regression settings, it is reasonable to assume that clusters
should be based on proximity of x .

• However, because the total number of partitions is so large,
placing higher prior mass on desirable partitions (joint DPM)
is not enough to ensure:
• prominence of these partitions in the posterior,
• sufficiently small posterior mass for undesirable partitions.

• Only way to ensure this is to place zero mass on undesirable
partitions in the prior.



Motivation

• Focus on a particular case: x is one-dimensional and
continuous.

• Partitions should be based on the natural ordering of x .
• Number of ways to partition the n subjects:

Bn =
n∑

k=1

Sn,k , a Bell number

Sn,k =
1

k!

k∑
j=0

(−1)j
(

k
j

)
(k− j)n a Stirling number of the second kind.

• Under a ordering constraint, number of ways to partition the
n subjects:

n∑
k=1

(
n − 1
k − 1

)
= 2n−1.

• Example: if n=10, B10 = 115, 975 and 2n−1 = 512, 0.44% of
the total partitions, and if n = 100, the percentage of
partitions under this constraint is less than 10−83% of the
total partitions.



Restricted DP: Construction

• Let x(1) < · · · < x(n) denote the ordered values of x , and
sπx (1), . . . , sπx (n) the corresponding values of s1, . . . , sn.

• Aim: remove partitions that violate the constraint that
s(1) ≤ . . . ≤ s(n).

• Yet, simply multiply the prior for ρn by the indicator for this event
does not work. We would remove no partitions for k = 1 or k = n
and many partitions for moderate k , inducing a strong bias in
favour of k = 1 or k = n!

• Solution: define a covariate dependent random partition model that
both removes undesirable partitions and retains certain properties of
the random partition model induced by the DP.



Restricted DP: Construction

More specifically, we keep unchanged the probability law of the
frequencies (m1, . . . ,mn) corresponding to cluster sizes (n1, . . . , nk),
where mj is the number of n1, . . . , nk that are equal to j .
For the DP, p(m1, . . . ,mn) is given by Ewens sampling formula.

By preserving the law of (m1, . . . ,mn), we also preserve the probability
law of the number of clusters k as for the DP.

Our proposed restricted covariate-dependent probability measure on the
random partition is defined by

p∗(ρn|x) =
αk

α[n]

n!

k!

k∏
j=1

1

nj
∗ Isπx (1)≤...≤sπx (n)

It satisfies the order constraint and has the same marginal for

(m1, . . . ,mn) and for k , as those induced by the Dirichlet process.



Restricted DP: Random partition

• Prior for the random partition:

p(ρn|x) ∝ αk

k!

k∏
j=1

1

nj
∗ Is(1)≤...≤s(n) .

• Posterior of ρn:

p(ρn|y , x) ∝ αk

k!

k∏
j=1

1

nj
p(yi ∈ Sj | xi ∈ Sj) ∗ Is(1)≤...≤s(n)(ρn).

• Computations for p(ρn | y , x) use reversible jump MCMC
(Fuentes-Garcia et al., 2010).

• Note: smaller parameter space → faster computations and
better mixing!



Restricted DP mixtures: Prediction

• Prediction of yn+1:

E[Yn+1 | xn+1, y , x ] = (2)

∑
ρn∈Cn

 ∑
sn+1∈C(xn+1,ρn)

E[Yn+1 | xn+1, y , x , ρn+1]
p(ρn+1 | x , xn+1)p(y | x)
p(ρn | x)p(y |x , xn+1)

 p(ρn | y , x),

where Cn is the set of partitions under the constraint and
C(xn+1, ρn) is the set of sn+1 such that ρn+1 restricted to n
observed subjects is ρn.



Restricted DP mixtures: Prediction

• Inner term of (2) may have three forms depending on xn+1

and ρn:

1. if xn+1 < x(1) (similarly for xn+1 > x(n)):

α

(k + 1)c
β′0xn+1 +

n1
(n1 + 1)c

β̂′1xn+1.

2. if x(i) < xn+1 < x(i+1) where s(i) = j and s(i+1) = j + 1:

α

(k + 1)c
β′0xn+1 +

nj
(nj + 1)c

β̂′jxn+1 +
nj+1

(nj+1 + 1)c
β̂′j+1xn+1.

3. if x(i) < xn+1 < x(i+1) where s(i) = j and s(i+1) = j :

nj
(nj + 1)c

β̂′jxn+1.



Simulated example: posterior on partition
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Figure: Data are generated as Yi |xi
indep∼ N(x2

i , 1). Three partitions with the

highest posterior probability. The very small values of the highest posterior

probabilities show that the posterior for the DPM and jDPM is very spread out.



Simulated example: curve estimate (prediction)
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(c) restricted DPM

Figure: Plot of the curve estimate in red at a grid of new x values, together

with the true curve in black and observed data in black circles. The poor result

for the DPM is due to the fact that the curve estimate is an average of the

linear regressions from all clusters, independent of location of the new x value.



Simulated example 2: posterior on partition
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(c) restricted
DPM

Figure: Data are generated as Yi |xi
indep∼ N(xi sin xi , 1/16). The posteriors on

the partition for the DPM and jDPM are extremely spread out and the MCMC

does not explore the partition space. Plots show three visited partitions.

Column 3: the three partitions with the highest posterior prob. for the rDPM .



Simulated example 2: curve estimate
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(b) joint DPM
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(c) restricted DPM

Figure: Curve estimate in red for a grid of new x values with the true
curve in black and the observed data in black circles.



Restricted DP: Application

• Aim: Prediction of
Alzheimer’s Disease (AD)
based on asymmetry of the
hippocampus.

• Data: n = 377 of which 159
have been diagnosed with AD
and 218 are cognitively
normal, y = 1 indicate a
healthy subject, and x
represent the ratio of the
volume of the left to right
hippocampus.
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Figure: The estimated probability of
being healthy for new subjects with
left-to-right hippocampus ratios of
0.7 to 1.3 by 0.01 with 90% credible
intervals.



summary

We underlined a problem with random partition in a simple
regression mixture model, that needs to be addressed.

We discussed the need of setting at zero the prior on undesirable
partitions, while preserving properties of the prior.

We obtain simpler computations, and better predictions.

For Bayesian statisticians, this is a contribution towards a more
aware and thoughtful use of BNP methods.

For big-data people, hope this may give hints for appropriate
restrictions in more general spaces..

thank you
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