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Building a Repository

Find all Mentions of Entities in Documents
• Resolve Mentions to the Identities of the Entities
• Extract typed Relations between Entities
• Extract typed Attribute values for Entities



Semantic Annotation of Documents

President Barack Obama has been re-elected to a second term, defeating Republican challenger Mitt Romney. 
America's first black president secured more than the 270 votes in the electoral college needed to win. In his victory 
speech before supporters in Chicago, Mr Obama said he would talk to Mr Romney about "where we can work 
together to move this country forward". Mr Obama prevailed despite lingering dissatisfaction with the economy and a 
hard-fought challenge by Mr Romney.

His Democrats also retained their majority in the Senate, which they have held since 2007. The Republicans kept 
control of the House of Representatives, which analysts say will likely result in more of the gridlock that 
characterized Mr Obama's first term, with the House and the president at loggerheads on most legislation.

In his address, the president challenged his opponents, asking them to work with him. With only Florida's 29 electoral 
votes still undecided, Mr Obama won 303 electoral votes to Mr Romney's 206. The popular vote, which is 
symbolically and politically important but not decisive in the race, remains very close.

Mr Obama congratulated Mr Romney and Republican vice-presidential candidate Paul Ryan on their hard-fought 
campaign. "We have picked ourselves up, we have fought our way back and we know in our hearts that for the United 
States of America the best is yet to come," he said. Mr Obama said he was returning to the White House "more 
determined, and more inspired than ever about the work there is to do, and the future that lies ahead". He pledged to 
work with Republican leaders in Congress to reduce the government's budget deficit, fix the tax code and reform the 
immigration system.



Semantic Annotation of Documents
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Traditional Supervised NLP

• Example: Syntactic analysis for English:
• Not solved, but accuracies are high
• 97% (or 90%?) for parts-of-speech
• 93% (or 83%?) for parse trees

New Task

Linguists Machine Learning

Treebank: 
2 million words

S

NP

P

She

VP

V

heard

NP

D

the

N
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A Note on Parallel Computing

• Most NLP models these days operate at sentence level
• Trivially parallelizable
• Focus on efficient single-core models

• Examples:
• Web-Scale Information Extraction
• Machine Translation

• Distributed systems might be needed for storage:
• Distributed Language Models, Phrase Tables, ... 

in Machine Translation, Speech Recognition, ...



Universal Tagging/Parsing

• Goal: high accuracy parsing in all languages with a 
single universal representation of syntax
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That’s already
too much!

Exploit
problem structure!



Coarse-to-fine Vine Parsing
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Max-Marginals
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Structured Prediction Setup

Define:

• w - parameter vector

• y ⇥ Y - valid dependency parses

• a ⇥ A - dependency arc

MAP Parse
y⇤ = argmax

y2Y
y · w

Max-Marginal
m(a) = arg max

y2Y:a2A
y · w
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Structured Prediction Cascades Training
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Pruning Threshold

• MAP score - y� · w

• Mean of max-marginal scores -
1

A

�

a⇤A
m(a) · w

Threshold is a convex combination of these scores:

t↵(w) = �y� · w + (1� �)
1

|A|
�

a⇤A
m(a) · w

� = 1 only keep max, � = 0 keep all above mean

Property: If y · w > t↵(w) then none of y arcs are pruned.

• Train to minimize pruning error (rather than 1-best)

• Pruning threshold:



Structured Prediction Cascades Training
[Weiss & Taskar ’10]

Pruning Threshold

• MAP score - y� · w

• Mean of max-marginal scores -
1

A

�

a⇤A
m(a) · w

Threshold is a convex combination of these scores:

t↵(w) = �y� · w + (1� �)
1

|A|
�

a⇤A
m(a) · w

� = 1 only keep max, � = 0 keep all above mean

Property: If y · w > t↵(w) then none of y arcs are pruned.

Structured Prediction Cascades
David Weiss Ben Taskar

GRASP
Laboratory

1. /e 0rst 0lter is run for 
each position of the input 

separately, computing the score 
of each label and a threshold 
and eliminating sub-threshold 
outputs.

2. /e out-
put of the 

0rst stage (uni-
grams) are ex-
panded into bi-
grams and are 
passed to the 
second level of 
the cascade. 

3. /e second 0lter (0rst-or-
der Markov model) com-

putes max marginals for each 
un0ltered bigram and a thresh-
old. Bigrams scoring below 
threshold are 0ltered.

4. /e un0ltered bigrams 
will be expanded to tri-

grams and passed as input to the 
third level of the cascade (sec-
ond-order Markov model).

`structured’!

�� ��

EXAMPLE: HANDWRITING RECOGNITION 

INTRODUCTION
We address the problem of supervised structured prediction:

Contributions:

A novel convex loss function spe-
cically geared for learning to 0lter 
accurately and e!ectively.

A simple online algorithm for 
minimizing this loss using stan-
dard inference methods.

/e 0rst theoretical analysis of gen-
eralization of a cascade (in terms 
of both accuracy and e1ciency).

Evaluation on two large-scale ap-
plications: handwriting recogni-
tion and part-of-speech tagging.

INSPIRATION: FACE-DETECTION CLASSIFIER CASCADE

GENERALIZING CASCADES FOR STRUCTURED OUTPUT CONVEX LEARNING OF STRUCTURED CASCADES
We introduce two novel loss functions: "lter loss (whether or not the truth 
is incorrectly 0ltered):

and e#ciency loss (proportion of unpruned max marginals):

/ese capture the fundamental trade-o! of cascaded approaches. For 0xed 
α (desired efficiency), we can minimize 0lter loss via the following QP:

GENERALIZATION BOUNDS
 Applying results from Bartlett & Mendelson (2002), we prove w.p. > 1-δ:

True loss on unknown distribution (generalization)

Emprical ramp upper-bound of training loss

Complexity term (m - number of clique assignments, l - number of cliques, B - 
bound on norm of input, γ - margin, n - number of examples)

Holds for both "ltering and e#ciency loss

RESULTS: IMPROVED EFFICIENCY AND ACCURACY

C1#

C2!

C3!

Cn!

Non)face#

Non)face#

Non)face#

Non)face# Face#

Our Approach: A cascade of simpler 
models progressively !lters a shared 
output space to enable learning of 
previously  intractable models. 

Pose Estimation:

Handwriting Recognition:

Filter out easy cases fast!

Most patches are non-face

Simple features 0rst

Low precision, high recall

Learned layer-by-layer

Next layer more complex

Viola & Jones (2001): Use simple classi0ers to make easy rejections quickly. 

Filter out easy partial assignments 

Only one true assignment

Lower order, resolution models 0rst

Classi"er Cascade Structured Cascade

a"

b"

c"

d"

a"

b"

c"

d"

a"

b"

c"

d"

a"

b"

c"

d"

Score!of!an!output:!

Compute#
Max#(*bc*)#

Max"marginal:"

Why max marginals?

Leads to safe "ltering 
condition necessary for 
generalization bounds.

Allows for convex loss 
functions (with convex 
0lter threshold).

1. Represent each partial 
assignment by the max score 
of any consistent sequence 
(max marginal).
2. Filter max marginals. 

ADAPTIVE CONVEX THRESHOLDING
We propose a novel “max mean-max” thresholding function, 

where α ε [0,1] controls 0ltering aggressiveness.

a" b" c" d" e" f" g" h" i" j" k" l" …"
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Mean                  Truth       Max
α=0.5

α=1

Online Learning Algorithm

Sub-gradient descent on SC 
optimization problem:

Try multiple values of α, choose 
(θ,α) with optimal trade-off of 
efficiency vs. accuracy on a de-
velopment set.

h : X → Y

h(x) = argmax
y∈Y

θ"f(x, y), Y = Y1 × · · ·× Y! (1)

tx(α) = αθ"x + (1− α)
1

|V|
∑

c∈C,yc∈Vc

θ"x(yc). (2)

SC : inf
w

λ

2
||w||2 + 1

n

∑

i

H(w; (xi, yi)), (3)

H(w; (xi, yi)) = max{0, $+ txi(α)−w"f(xi, yi)}.

θ ← (1− λ)θ + ηf(x, y)− η∂txi(α)

∂txi(α) = αf(x, y")− (1− α)
1

m

∑

yc

f(x, y"(yc))
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We pose the problem of learning to 
!lter accurately and e"ciently using 
two novel loss functions which we 
optimize using sub-gradient descent.

0!

1!

Using two key insights about our loss functions, we provide the !rst theoretical bounds for the both 
e"ciency and accuracy of a cascade.

Cascade'order' 1' 2' 3' 4'
Char"accuracy" !!���" "�� #" "!�#�" #����"
Word"accuracy" � � �" �#���" !��"�" "��� "
Filter"loss" ��� " ��##" ����"
Num"states/pos" � " ����"" ""� " ���"

Full' SCP' CRF' Taglist'

Accuracy"(%)" # �"�" # �"�" # �"�" III"

Filter"Loss"(%)" �" ����" 0.024' ����""

Test"Time"(ms)" �!���"" 1.56' ��� " ��� "

��
����
�����	�" �#���!" 3.93' ���"��" #���#"
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Handwriting Recognition (le$)

SC reduces the size of the search space 
by "ve orders of magnitude

Triples word-level accuracy using 4-th 
order Markov model

Part-of-Speech Tagging (right, below)

SC is 100 times more e#cient than un0ltered mod-
el with same level of accuracy (right)

SC (blue) is three times as e#cient as CRF (green) 
0ltering methods in a re"ned search space (below)

Error Cap on Development Set (%)

Key Insights In Proof

Scalar vs. Vector: Both loss func-
tions can be expressed as func-
tions on score vectors

Lipchitz Continuity: We show 
that the loss functions are 

 Lipchitz continuous

FUTURE DIRECTIONS
A structured prediction cascade can be formed from arbitrary sets of models: we are currently exploring how to 

learn an optimal cascade model set or combine di!erent types of models in a single cascade, as well as applying 
our method to intractable models (e.g. factored-state Dynamic Bayes Nets).  

�� �� "
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• Pruning threshold:
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INTRODUCTION
We address the problem of supervised structured prediction:

Contributions:

A novel convex loss function spe-
cically geared for learning to 0lter 
accurately and e!ectively.

A simple online algorithm for 
minimizing this loss using stan-
dard inference methods.

/e 0rst theoretical analysis of gen-
eralization of a cascade (in terms 
of both accuracy and e1ciency).

Evaluation on two large-scale ap-
plications: handwriting recogni-
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 Applying results from Bartlett & Mendelson (2002), we prove w.p. > 1-δ:
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Complexity term (m - number of clique assignments, l - number of cliques, B - 
bound on norm of input, γ - margin, n - number of examples)

Holds for both "ltering and e#ciency loss
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Online Learning Algorithm

Sub-gradient descent on SC 
optimization problem:

Try multiple values of α, choose 
(θ,α) with optimal trade-off of 
efficiency vs. accuracy on a de-
velopment set.

h : X → Y
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y∈Y

θ"f(x, y), Y = Y1 × · · ·× Y! (1)

tx(α) = αθ"x + (1− α)
1
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∑

i

H(w; (xi, yi)), (3)

H(w; (xi, yi)) = max{0, $+ txi(α)−w"f(xi, yi)}.

θ ← (1− λ)θ + ηf(x, y)− η∂txi(α)
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We pose the problem of learning to 
!lter accurately and e"ciently using 
two novel loss functions which we 
optimize using sub-gradient descent.

0!

1!

Using two key insights about our loss functions, we provide the !rst theoretical bounds for the both 
e"ciency and accuracy of a cascade.

Cascade'order' 1' 2' 3' 4'
Char"accuracy" !!���" "�� #" "!�#�" #����"
Word"accuracy" � � �" �#���" !��"�" "��� "
Filter"loss" ��� " ��##" ����"
Num"states/pos" � " ����"" ""� " ���"

Full' SCP' CRF' Taglist'

Accuracy"(%)" # �"�" # �"�" # �"�" III"

Filter"Loss"(%)" �" ����" 0.024' ����""

Test"Time"(ms)" �!���"" 1.56' ��� " ��� "

��
����
�����	�" �#���!" 3.93' ���"��" #���#"

REFERENCES & ACKNOWLEDGEMENTS
[1] P. L. Bartlett and S. Mendelson. Rademacher and Gaussian complexities: Risk bounds and structural results.Journal of Machine Learning Research, 2002. [2] P. Viola and M. Jones. Robust 

real-time object detection. International Journal of Computer Vision, 57, 2002. /is work was supported under NSF Grant # 0803256.

�� ��

©"Arthur"Gretton"

Handwriting Recognition (le$)

SC reduces the size of the search space 
by "ve orders of magnitude

Triples word-level accuracy using 4-th 
order Markov model

Part-of-Speech Tagging (right, below)

SC is 100 times more e#cient than un0ltered mod-
el with same level of accuracy (right)

SC (blue) is three times as e#cient as CRF (green) 
0ltering methods in a re"ned search space (below)

Error Cap on Development Set (%)

Key Insights In Proof

Scalar vs. Vector: Both loss func-
tions can be expressed as func-
tions on score vectors

Lipchitz Continuity: We show 
that the loss functions are 

 Lipchitz continuous

FUTURE DIRECTIONS
A structured prediction cascade can be formed from arbitrary sets of models: we are currently exploring how to 

learn an optimal cascade model set or combine di!erent types of models in a single cascade, as well as applying 
our method to intractable models (e.g. factored-state Dynamic Bayes Nets).  
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we use a non-probabilistic filter, based on the max-
marginal value of the index:

f(i) = 1[ m(i) · w < t�(w) ]

where t�(w) is a sentence-specific threshold value.
Since the max-marginals are not normalized, the
threshold t�(w) is set as a convex combination of
the 1-best parse score and the average max-marginal
value:

t�(w) = �max
y⌅Y

(y · w) + (1� �)
1

|I|
�

i⌅I
m(i) · w

where the model-specific parameter 0 ⇤ � ⇤ 1 is
the tradeoff between � = 1, pruning all indices i not
in the best parse, and � = 0, pruning all indices with
max-marginal value below the mean.

The threshold function has the important property
that for any parse y, if y · w > t�(w) then y(i) = 1
implies f(i) = 0, i.e. if the parse score is above the
threshold, then none of its indices will be pruned.

4.2 Filter Loss Training
The aim of our pruning models is to filter as many
indices as possible without losing the gold parse. In
structured prediction cascades, we incorporate this
pruning goal into our training objective.

Let y be the gold output for a sentence. We define
filter loss to be an indicator of whether any i with
y(i) = 1 is filtered:

�(y, w) = 1[⇧i ⌅ y,m(i) · w < t�(w)]

During training we minimize the expected filter loss
using a standard structured SVM setup. First we
form a convex, continuous upper-bound of our loss
function:

�(y, w) ⇤ 1[y · w < t�(w)]

⇤ max{0, 1 + t�(w)� y · w}

where the first inequality comes from the proper-
ties of max-marginals and the second is the standard
hinge-loss upper-bound on an indicator. We then
form the regularized risk minimization:

min
w

⇤⌦w⌦2 + 1

M

M�

m=1

max{0, 1 + t�(w)� ym ·w}

This objective is convex and non-differentiable, due
to the max inside t�. We optimize using stochastic
subgradient descent (Shalev-Shwartz et al., 2007).
The stochastic subgradient at example m, Hm(w) is
0 if ym � 1 > t�(w) otherwise,

Hm(w) =
2⇤w

M
+�y⇥+(1��)

1

|I|
�

i⌅I
m(i)� ym

where y⇥ = argmaxy0⌅Y y⇤ · w. Each step of the
algorithm has an update of the form:

wk = wk�1 � ⇥kHm(w)

where ⇥ is an appropriate update rate for subgradient
convergence.

From a high level, if � = 1 the objective is identi-
cal to structured SVM with 0/1 hinge loss with Pega-
sos updates. For other values of �, the extra term is
based on the features of the max-marginal structures
at each index. These feature counts can be computed
using dynamic programming.

4.3 1-Best Training
For the final pass, we want a training algorithm
that optimizes for the 1-best structure. Several
different learning methods are available for struc-
tured prediction models including structured percep-
tron (Collins, 2002), max-margin models (Taskar et
al., 2003), and log-linear models (Lafferty et al.,
2001). In this work, we use the margin infused
relaxed algorithm (MIRA) (Crammer and Singer,
2003; Crammer et al., 2006) with a hamming-loss
margin. MIRA is an online algorithm with similar
benefits as structured perceptron in terms of sim-
plicity and fast training time. In practice, we found
that MIRA with hamming-loss margin gives a per-
formance improvement over structured perceptron.

5 Parsing Experiments

To compare the speed of various pruning techniques,
we present empirical experiments using the Penn
WSJ Treebank (Marcus et al., 1993).3 We use the
standard English experimental split with sections 2-
21 as training, section 22 as validation, and section
23 as test. Both training and test experiments fo-
cus on unlabeled dependency prediction. Accuracy

3English dependencies were extracted using the Stanford de-
pendency framework (De Marneffe et al., 2006).

• Train to minimize pruning error (rather than 1-best)

• Pruning threshold:

• Training objective:
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t↵(w) = �y� · w + (1� �)
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|A|
�

a⇤A
m(a) · w

� = 1 only keep max, � = 0 keep all above mean

Property: If y · w > t↵(w) then none of y arcs are pruned.
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A novel convex loss function spe-
cically geared for learning to 0lter 
accurately and e!ectively.

A simple online algorithm for 
minimizing this loss using stan-
dard inference methods.

/e 0rst theoretical analysis of gen-
eralization of a cascade (in terms 
of both accuracy and e1ciency).

Evaluation on two large-scale ap-
plications: handwriting recogni-
tion and part-of-speech tagging.
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We introduce two novel loss functions: "lter loss (whether or not the truth 
is incorrectly 0ltered):

and e#ciency loss (proportion of unpruned max marginals):

/ese capture the fundamental trade-o! of cascaded approaches. For 0xed 
α (desired efficiency), we can minimize 0lter loss via the following QP:

GENERALIZATION BOUNDS
 Applying results from Bartlett & Mendelson (2002), we prove w.p. > 1-δ:

True loss on unknown distribution (generalization)

Emprical ramp upper-bound of training loss

Complexity term (m - number of clique assignments, l - number of cliques, B - 
bound on norm of input, γ - margin, n - number of examples)

Holds for both "ltering and e#ciency loss
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Online Learning Algorithm

Sub-gradient descent on SC 
optimization problem:

Try multiple values of α, choose 
(θ,α) with optimal trade-off of 
efficiency vs. accuracy on a de-
velopment set.

h : X → Y
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y∈Y
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We pose the problem of learning to 
!lter accurately and e"ciently using 
two novel loss functions which we 
optimize using sub-gradient descent.
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Using two key insights about our loss functions, we provide the !rst theoretical bounds for the both 
e"ciency and accuracy of a cascade.
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learn an optimal cascade model set or combine di!erent types of models in a single cascade, as well as applying 
our method to intractable models (e.g. factored-state Dynamic Bayes Nets).  
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we use a non-probabilistic filter, based on the max-
marginal value of the index:

f(i) = 1[ m(i) · w < t�(w) ]

where t�(w) is a sentence-specific threshold value.
Since the max-marginals are not normalized, the
threshold t�(w) is set as a convex combination of
the 1-best parse score and the average max-marginal
value:

t�(w) = �max
y⌅Y

(y · w) + (1� �)
1

|I|
�

i⌅I
m(i) · w

where the model-specific parameter 0 ⇤ � ⇤ 1 is
the tradeoff between � = 1, pruning all indices i not
in the best parse, and � = 0, pruning all indices with
max-marginal value below the mean.

The threshold function has the important property
that for any parse y, if y · w > t�(w) then y(i) = 1
implies f(i) = 0, i.e. if the parse score is above the
threshold, then none of its indices will be pruned.

4.2 Filter Loss Training
The aim of our pruning models is to filter as many
indices as possible without losing the gold parse. In
structured prediction cascades, we incorporate this
pruning goal into our training objective.

Let y be the gold output for a sentence. We define
filter loss to be an indicator of whether any i with
y(i) = 1 is filtered:

�(y, w) = 1[⇧i ⌅ y,m(i) · w < t�(w)]

During training we minimize the expected filter loss
using a standard structured SVM setup. First we
form a convex, continuous upper-bound of our loss
function:

�(y, w) ⇤ 1[y · w < t�(w)]

⇤ max{0, 1 + t�(w)� y · w}

where the first inequality comes from the proper-
ties of max-marginals and the second is the standard
hinge-loss upper-bound on an indicator. We then
form the regularized risk minimization:

min
w

⇤⌦w⌦2 + 1

M

M�

m=1

max{0, 1 + t�(w)� ym ·w}

This objective is convex and non-differentiable, due
to the max inside t�. We optimize using stochastic
subgradient descent (Shalev-Shwartz et al., 2007).
The stochastic subgradient at example m, Hm(w) is
0 if ym � 1 > t�(w) otherwise,

Hm(w) =
2⇤w

M
+�y⇥+(1��)

1

|I|
�

i⌅I
m(i)� ym

where y⇥ = argmaxy0⌅Y y⇤ · w. Each step of the
algorithm has an update of the form:

wk = wk�1 � ⇥kHm(w)

where ⇥ is an appropriate update rate for subgradient
convergence.

From a high level, if � = 1 the objective is identi-
cal to structured SVM with 0/1 hinge loss with Pega-
sos updates. For other values of �, the extra term is
based on the features of the max-marginal structures
at each index. These feature counts can be computed
using dynamic programming.

4.3 1-Best Training
For the final pass, we want a training algorithm
that optimizes for the 1-best structure. Several
different learning methods are available for struc-
tured prediction models including structured percep-
tron (Collins, 2002), max-margin models (Taskar et
al., 2003), and log-linear models (Lafferty et al.,
2001). In this work, we use the margin infused
relaxed algorithm (MIRA) (Crammer and Singer,
2003; Crammer et al., 2006) with a hamming-loss
margin. MIRA is an online algorithm with similar
benefits as structured perceptron in terms of sim-
plicity and fast training time. In practice, we found
that MIRA with hamming-loss margin gives a per-
formance improvement over structured perceptron.

5 Parsing Experiments

To compare the speed of various pruning techniques,
we present empirical experiments using the Penn
WSJ Treebank (Marcus et al., 1993).3 We use the
standard English experimental split with sections 2-
21 as training, section 22 as validation, and section
23 as test. Both training and test experiments fo-
cus on unlabeled dependency prediction. Accuracy

3English dependencies were extracted using the Stanford de-
pendency framework (De Marneffe et al., 2006).

• Train to minimize pruning error (rather than 1-best)

• Pruning threshold:

• Training objective:
• Filter as many arcs as possible
• While preserving gold arc
• Optimize with stochastic gradient decent

(not so different from perceptron updates)
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Google Web Treebanks

• Google Web Treebank
• Funded by Google, annotated and released by LDC
• 5 domains: Blogs, Newsgroups, Reviews, Emails, Q&A
• ~2,000 manually annotated sentences (PTB-style)
• >100,000 unlabeled sentences

• Shared Task at NAACL ’12 Workshop
• Constituency Trees or Stanford Dependencies
• Train on WSJ + unlabeled data
• 2 domains released for development
• Test on remaining 3 domains

• New: Google Multilingual Treebank (6 languages)

[Petrov & McDonald ’12]
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Parsing Accuracy (SANCL Shared Task)
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Tagging Search Queries

Baseline Retrained

[Ganchev et al. ’12]

VERB NOUN NUM NOUN



Query Tagging Results
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Integrated Tagging & Parsing

• Sequential Markov Models have limitations:

• Ongoing work:
Search jointly over POS tags and parse trees.
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Reordering Score

• Source-side reordering for Japanese-English MT

• Hand generated reordering data (English + Jenglish)
• ~ 10k sentences for Augmented Loss training
• ~ 6k evaluation sentences

• Score based on reordering penalty of METEOR

• Very well correlated with human eval scores.

reorder-score =

# chunks� 1

# unigrams matched� 1

reorder-loss = 1� reorder-score

[Collins et al. ’05]

[Talbot et al. ’11]
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Standard Perceptron Training

Standard Perceptron

� = � + ⇥(y⇤)� ⇥(y)

y = argmax

y�Y
x

w · �(y)

x = John likes Mary

y* =

Y
x

...
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i) ŷ 2 Y

Similar to [Chang et al. ’08, McAllester et al. ’10]

[Hall et al. ’11]



Augmented Loss (Online) Training

Trainer

x1,y1

x2,y2

xi,yi

xn,yn

...
...

Intrinsic Data

y 2 Y

x’1,y’1
x’2,y’2

x’i,y’i

x’n,y’n

...
...

Extrinsic Data

y0 2 Y 0

Y 6= Y 0
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Similar to [Chang et al. ’08, McAllester et al. ’10]
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Similar to [Chang et al. ’08, McAllester et al. ’10]



60

65

70

75

80

Reorder

78.6778.3978.19
76.49

Example MT-Reordering
“Clean” experiment

20

25

30

35

40

Exact

39.5839.0238.71

35.29
Baseline
1/2x extrinsic
1x extrinsic
2x extrinsic

Production: 0.786 -> 0.792 enja fuzzy score 
On top of targeted up/self-training [Katz-Brown et al. ’11]



Syntactic Transfer
• Learn parsers for resource-poor 

languages from resource-rich 
languages

• Hwa et al. 2005 and earlier

-RKQ���OLNHV���0DU\
1281����9(5%�����1281

English Treebank

Syntactic
Transfer

...

Dictionaries:



Confidence Estimation



Confidence Estimation



Confidence Estimation

• Sometimes it is possible to say: “I don’t know”

• Ten blue links are better than triggering an incorrect 
answer 

• The (English) web is redundant:
• Skip examples with low confidence predictions
• Discount low-confidence contradicting predictions



In Summary

• Efficiency:
• Exploit problem structure and domain knowledge
• Train models specifically for pruning

• Adaptation:
• Use unsupervised data
• Use indirect signals
• “Manual intervention”

• Confidence:
• ?



Learning from Indirect Signals
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Learning from Indirect Signals
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Learning from Indirect Signals

Labeled Data

Unlabeled Data

Structured Data

Ewok



Learning from Indirect Signals

Labeled Data

Unlabeled Data

Learning & Modeling

Structured Data

Ewok



Hypothesis

• Understanding arises from machine learning of 
relationships implicit in web content and use
• Some expert annotation may be needed to start

• Most evidence is not explicitly
annotated: text “in the wild”

• Aggregate information from multiple
unstructured sources into a 
structured “knowledge base”

• Exploit user interactions and 
implicit user feedback

[Based on slide from Fernando Pereira]

Systems

Users

Data



Thank you!

slav@google.com
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