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Problem

Support interactive ad-hoc exploration
qgueries over very large datasets



Why iIs This a Problem?

100 TB on 1000 cores/disks

1-2 Hours 10-15 Minutes 1 second

Hard Disks Memory



Why is This a Problem?

Even if no communication and all data in

memory, query may take tens of sec
» Just scanning 200-300GB RAM may take 10 sec

Still slow for interactive queries



Why is This a Problem?
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[ Data Grows faster than Moore’s Law ]

[IDC report, Kathy Yelick, LBNL]




Key Insight

[ Computations don't always need exact answers ]

* |nput often noisy: exact computations do not
guarantee exact answers

* Error often acceptable if small and bounded

Best scale Speedometers  OmniPod Insulin Pump

*+ 200(Q error + 2.5 % error + 096 % error
(edmunds.com) (www.ncbi.nlm.nih.gov/pubmed/22226273)



Approach: Sampling

Compute results on samples instead of full data
» Typically, error depends on sample size (n) not on original
data size, i.e., error a 1/+/n

Can trade between answer’s latency and accuracy

Data rapid increase no longer a “problem”:
» Error decreases with Moore’s law: halves every 36 months



This Talk

BlinkDB: approximate query engine for very
large data sets using off-line sampling



BlinkDB Interface

SELECT avg(sessionTime)

FROM Table
WHERE city="'San Francisco’ AND ‘dt=2012-9-2'
WITHIN 1 SECONDS > 234.23 £15.32




BlinkDB Interface

SELECT avg(sessionTime)

FROM Table
WHERE city="'San Francisco’ AND ‘dt=2012-9-2'
WITHIN 2 SECONDS > 23423+1532

239.46 £ 4.96

SELECT avg(sessionTime)

FROM Table

WHERE city="'San Francisco’ AND ‘dt=2012-9-2'
ERROR 0.1 CONFIDENCE g95.0%



BlinkDB Overview

Offline-sampling:

9 Optimal set of
'§ samples across
‘ - %D different dimensions
= (columns or sets of
Original § columns) to support
Data ad-hoc exploratory

gueries



BlinkDB Overview

Sample Placement:

= Samples striped over
kS 1005 or 1,000s of
= .
TABLE o machines both on
s disks and in-memory.
Original %
(0p)
Data |:[

B On-Disk In-Memory
Samples Samples




BlinkDB Overview

Sfi';E(f)T Query Plan

FROM >
TABLE :
WITHIN 27 Sample Selection

HiveQL/SQL 1
Query J \

‘ TABLE

Original
Data

Sampling Module

B On-Disk  In-Memory <@
Samples Samples *




BlinkDB Overview

SELECT
00 (% Query Plan
FROM >
TABLE .
WITHIN 27 Sample Selection
HiveQL/SQOL n
Query J \
Online sample
= selection to pick
é best sample(s)
‘ TABLE o E based on query
S latency and
. &
Original 8 accu.racy
Data requirements

2 On-Disk |n-Memory
Samples Samples .




BlinkDB Overview

SELECT Error Bars &
foo (*) Confidence Intervals
FROM ->
V\,T,ﬁﬁl.',ﬁw Sample Selection Hadoop/Spark
HiveQL/SQL 7
Query I !
Result
= 182.23 + 5.56
-é (95% confidence)
‘ TABLE 15 I Parallel query
3 execution on
Original & multiple samples
Data I:[ uitip P

striped across
multiple machines.

2 On-Disk In-Memory
Samples ~ Samples Je%e




Challenges

Which set of samples to build given a storage
budget?

Which sample to run the query on?

How to accurately estimate the error?



Challenges

Which sample to run the query on?

How to accurately estimate the error?



Error Latency Profile (ELP)
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Error Latency Profile (ELP)
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Error Latency Profile (ELP)

Relative Error

0.5
0.4

0.3
0.2

0.1

¢

Relative Error “*Time Taken

X
+
T S-S T 7 S H R 2
" N N O O O
d N &

Sample Size (in MB)

8192

16384

32768

65536 °

O r N W &~ U

Time Taken (in seconds)



Error Latency Profile (ELP)
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Error Latency Profile (ELP)
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Error Latency Profile (ELP)
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Error Latency Profile (ELP)

SELECT
foo (*)
FROM
TABLE

WITHIN 27

Statistical Error (%)
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Error Latency Profile (ELP)
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Challenges

Which sample to run the query on?

How to accurately estimate the error?



How to Accurately Estimate Error?

Close formulas for limited number of operators
» E.g., count, mean, percentiles

What about user defined functions (UDFs)?



Experimental Workload

Conviva: 30-day log of media accesses by
Conviva users. Raw data 17 TB, partitioned this
data across 100 nodes

Log of 20,000 queries
» 43.6% queries have one or more UDFs

Storage budget: 50% of original data
» 8 stratified samples

CONVIVA




Experimental Setting

100 node cluster of EC2 extra large instances:

» 800 cores
»6.8TB RAM
» 75 TB disk

Two datasests: 2.5TB, and 7.5TB, respectively
» Significantly larger when stored in memory
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Query Response Time
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Query Response Time
(seconds)

Sampling vs. No Sampling

(close formula)
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How to Accurately Estimate Error?

Close formulas for limited number of operators
» E.g., count, mean, percentiles

What about user defined functions (UDFs)?



Bootstrap
Quantify accuracy of a query on a sample table

Original
Table 1 —> O(T) O(T) takestoo long!

@ sample

S| =N—» —> O(S) whatis Q(S)'s error?
sampling S, —> O (S,)] Yse o(Sy), .., O(5x)

with to compute estimator

replacement — quality assessment,

s =08 eg. sidev(O(S))
S| =N




Also Useful for Close Formulas

N\NZ

filtera | | filterz2

Every error propagation step may
introduce additional error

r =Xy, € = epr(€y, )




Also Useful for Close Formulas

filtera | | filter2 filtera | | filterz2

filtera | | filterz2

Bootstrapping only computes
errors on the final result

¢ —————————— -_w-—m 00000 Aaym mm mm mm mm mm mm mm omm
r = xly, € = epr(€4, &) 1 %




Relative Error

Also Useful for Close Formulas

; ; Bootstrap
02 F T o ~ Error Propagation
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Bootstrap Challenges

Overhead



How Do You Know Bootstrap is
Working?

Assumption: f() is Hadamard differentiable
» How do you know an UDF is Hadamard differentiable?
» Only asymptotic consistency
» Sufficient, not necessary condition

Developed data-driven diagnostic for Bootstrap
» Compare bootstrapping with ground truth for small
samples
» Check whether error improves as sample size increases



Ground Truth (Approximation)

Original

r Table



Ground Truth (Approximation)

Original
i Table
S1 :> Q (Sl)
5 - £ = stdev(Q(S)))
¢ AN
S, —> 0 (S,) Estimator quality
assessment




Ground Truth and Bootstrap

T Original ~ Bootstrap on
Table Individual Samples
\ St —> 0 (S;)
S ; : L& = stdev(Q(S))
Stk —> 0 (S;) |
‘l’ Spl :> Q (Spl)
S : L FE, = stdev(Q(S,)
——
Sk —> 0 (S, |




Ground Truth vs. Bootstrap

~/
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Ground Truth vs. Bootstrap
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Ground Truth vs. Bootstrap
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Bootstrap Diagnosis

Expectation test:
» Bootstrap results should not deviate “too much” from

ground truth, on average

Standard deviation test:
» Bootstrap results should not vary “too much”

Confidence interval test:
» Most (e.qg., 95%) of bootstrap results should be
"“close” to ground truth



Expectation Test
mean(;,....§,)-&| (A

i+1

< Al')v(AiH = Cl)

e

Yi=1,...,s

n, n 3
Sample Size



Standard Deviation Test

stddev(E.,,..., §;) (O,

w <O)V(0, =c,),
l & Vi=1,...,s

n, Ny B
Sample Size



Confidence Interval Test

#ij€E1,...,p: 5’7:§i <cCyp

~i,

P

Fraction a of bootstrap results have rel. error of at
most c; from ground truth (e.g., a = 0.95, ¢; = 0.5)



How Well Does it Work in Practice?

Evaluated on 268 real-world Conviva Queries of
which 113 had custom User-Defined Functions

Diagnostic predicted that 207 (77%) queries can

be approximated
» False Positives: 3 (conditional UDFs)
» False Negatives: 18




Bootstrap Challenges

How do you know the bootstrap is working?
» Depends on distribution, computation, sample size



Very, Very Preliminary Results

Setting:
» 25 EC2 instances with 4 slots and 15GB RAM
» Input: 365mil rows, 204GB on disk, > 600GB in
memory (deserialized format)
» Workload: query computing g95-th percentile

Overheads:
» Bootstrap to estimate result’s error
» Bootstrap diagnosis



Query Resp. Time & Overhead

Operation Computation |1/O
complexity complexity

Full data C(N) O(N)

N — data size




Query Resp. Time & Overhead

Operation Computation |1/O
complexity complexity

Full data C(N) O(N)
Sample C(n) O(n)
N —data size

n —sample size




Query Resp. Time & Overhead

Operation Computation |1/O
complexity complexity

Full data C(N) O(N)
Sample C(n) O(n)
Bootstrap kxC(n) kxO(n)

N -data size k — # of samples used by bootstrap

n —sample size




Query Resp. Time & Overhead

Operation Computation |1/O
complexity complexity

Full data C(N) O(N)
Sample C(n) O(n)
Bootstrap kxC(n) kxO(n)

Diagnosis pxkxEC(ni) pxkxEO(ni)
i=1 i=1

N —data size k — # of samples used by bootstrap
n —sample size p — # of samples used by ground truth
n,—sample size for s — # of iteration used by diagnostic

iteration i of diagnostic




Query Response Time

seconds
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Query Resp. Time + Bootstrap

seconds
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B Bootstrap overhead

I Query Response Time

Bootstrap overhead up to 10x I
\

higher than query itself
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Bootstrap Query Plan

Query plan Table

Table

Table, | Bootstrap | Table,

@ N @ plan @
) &
CHS &




Detailed Query Plan

Query plan Query

SELECT percentile (sesstiontimes, 0.95)
FROM Table
WHERE

@ dt >=start_day
AND

dt <= end_day

AND
customerld = “customeri”

AND

@ sessionType="type1”

Table




Detailed Query Plan

Typically, filters remove many rows from input table

SELECT percentile (sesstiontimes, 0.95)
FROM Table
 WHERE

@ dt >= start_day
AND

dt <= end_day

Samly
customerld = “customera”
AND

@ | sessionType="type1”

Table




Filter Pushdown Optimization

Table

-

Table

2

Typically, much
smaller than “Table”

J

Table,

— |

Tablef

\

Bootstrap

Table,
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Query + Bootstrap + Diagnosis

seconds

1000
900
800
700
600
500
400
300
200
100

0

(with Filter Pushdown)

M Diagnosis overhead

B Bootstrap overhead

™ Query Response Time

( Diagnosis overhead up to 8x
L higher than the rest

377 373 271

A\ | ]

393

Fraction
5 offull data

10 10-2 103 104 10



Overhead

Operation |Comp. Comm. # of tasks
complexity |complexity

Full data C(N) O(N) O(d)
Sample C(n) O(n) QO(d)

Can generate
Bootstrap kxC(n) kxO(n) miIIiogs of tasks

Diagnosis PXkXEC(ni) PXkXEO(”i) sx pxkxO(d)
=1 =1

N -data size k — # of samples used by bootstrap

n —sample size p — # of samples used by ground truth

n,—sample size for s — # of iteration used by diagnostic
iteration i of diagnostic  d—degree of parallelism




Diagnosis Optimization

Problem: too many tasks to launch & schedule
» Fixed overhead dominates

Solution: task consolidation
» Consolidate the computation into d tasks, where d is

the number of slots in the system
» Caveat: currently a hack; not part of BlinkDB codebase

Result:
» Reduce diagnosis from 3305 to 4.55s
» Reduce bootstrap overhead by up to 10x



Query + Bootstrap + Diagnosis
(with Filter Pushdown and Task Consolidation)

sec. 1020 B Diagnosis overhead
300 — B Bootstrap overhead
™ Query Response Time
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100 - | overhead
50 -
Fraction
0 - of full data

1 10 10-2 10 104 10



Summary

Computing error bounds for approximate
gueries on massive data sets: a hard,
Important, and exciting problem

At the intersection between:
» ML: error computation
» Databases: query plan optimization, sample creation
and selection
» Systems: improved parallelism, scheduling

Preliminary results encouraging



Future Work

Improve bootstrap diagnostic:
» Provable properties for specific settings

Improve coverage for error estimation
» E.g., use static analysis to decompose programs in
multiple Hadamard differentiable components

Improve Bootstrap scalability with Bag of Little

Bootstraps [Kleiner et al. 2012]:
» No need to distribute query computation even for huge
samples (e.qg., 200 billion records @ 1KB per record)

Scheduling concurrent parallel, dependent jobs ...



