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For non-convex problems: “Mind the gap
@ any global optimum is “statistically good”....

@ but efficient algorithms only find local optima

Question

How to close this undesirable gap between statistics and computation?
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Set-up: Observe (y;,x;) pairs for i = 1,2,...,n, where

yi ~ Q(- | (07, 23)),

where 6 € RP has “low-dimensional structure”
X *
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Estimator: R)-regularized likelihood

0 € argmoin{ - %Zk’g@(yi | (24, 0)) +R,\(9)}-

i=1



Vignette A: Regression with non-convex penalties
X *
y 0
I ( S
n ~ Q -
SC
Example: Logistic regression for binary responses y; € {0,1}:

~ 1<
ind = (i)Y _ o (s
S argmgm{niz:;{log(l—i-e ) — yi(zs, 9)}4—73)\(9)}.

Many non-convex penalties are possible:
@ capped {;-penalty

@ SCAD penalty (Fan & Li, 2001)
@ MCP penalty (Zhang, 2006)



R,

Convex and non-convex regularizers

Regularizers
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Statistical error versus optimization error

Algorlthm generating sequence of iterates {01‘,}?30 to solve
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Global minimizer of population risk

0" := arg mginIEXy [E(G;X, Y)}

L£(6)

Goal of statistician

Provide bounds on Statistical error: 16 — 67| or || — 6% ||

Goal of optimization-theorist

Provide bounds on Optimization error: 16t — 8|




Logistic regression with non-convex regularizer

log error plot for logistic regression with SCAD, a = 3.7

—opt err
——stat err

Y
ey
|
=t
S
o
- =25
-3
-3.5
_4 L 1 I
0 500 1000 1500 2000

iteration count



What phenomena need to be explained?

Empirical observation #1:
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What phenomena need to be explained?

Empirical observation #1:

From a statistical perspective, all local optima are essentially as good as a
global optimum.

Some past work:
@ for least-squares loss, certain local optima are good (Zhang & Zhang, 2012)

o if initialized at Lasso solution with /.-guarantees, local algorithm has
good behavior (Fan et al., 2012)

Empirical observation #2:

First-order methods converge as fast as possible up to statistical precision.
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Vignette B: Error-in-variables regression

Begin with high-dimensional sparse regression:
Y X 0" €
S
n o +
SC

Observe y € R™ and Z € R"*P
4 X

-

Here W € R™*? is a stochastic perturbation.



Example: Missing data
Missing data:

Here W € R™*? is multiplicative perturbation (e.g., W;; ~ Ber(a

y X 0" c
I - S I
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Example: Additive perturbations

Additive noise in covariates:

Here W € R"*? is an additive perturbation (e.g., W;; ~ N(0, o?

Yy X o* €
I - S I
n o +
SC




A second look at regularized least-squares

Equivalent formulation:
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A second look at regularized least-squares

Equivalent formulation:

D50 0.0 4 o))

0 € arg min
OcR?
Population view: unbiased estimators

XTX
n

}, and cov(ml,yl):E[XTTy].

cov(zy) = E[
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Corrected estimators

Equivalent formulation:

XTXx XTy }

GEargmln{ o7 ( )0 — (0, —L> + RA(0) ¢

9cRp
Population view: unbiased estimators

XTX
n

}, and cov(:rl,yl)z]E[XTTy}.

cov(zy) = IE[

A general family of estimators
~ 1
in {-0TT0 — 075 + X210 2}
Gearg(glelﬁg)b 7+ Al

where (I',7) are unbiased estimators of cov(z) and cov (1, y1).

Martin Wainwright (UC Berkeley) . May=2013 10 /1




Example: Estimator for missing data

@ observe corrupted version Z € R"*P

7 _ X;; with probability 1 — «
R with probability a.
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Example: Estimator for missing data

@ observe corrupted version Z € R"*P
with probability 1 — «

Zij = . ..
* with probability a.
@ Natural unbiased estimates: set x = 0 and Z := (1fa)
7T 77 7T 7 2T
and 7 = —y,
n

T
z 7z — adiag (an),

@ solve (doubly non-convex) optimization problem: (Loh & W., 2012)

~ S YA N
0 e arg min {§9T1"9 — (7, 0) + RA(0) }.



Non-convex quadratic and non-convex regularizer

log error plot for corrected linear regression with MCP, b = 1.5
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Remainder of talk

@ Why are all local optima “statistically good”?

» Restricted strong convexity
» A general theorem
» Various examples

© Why do first-order gradient methods converge quickly?
» Composite gradient methods
> Statistical versus optimization error
» Fast convergence for non-convex problems

Martin Wainwright (UC Berkeley)



Geometry of a non-convex quadratic loss

@ Loss function has directions of both positive and negative curvature.



Geometry of a non-convex quadratic loss

@ Loss function has directions of both positive and negative curvature.

@ Negative directions must be forbidden by regularizer.



Restricted strong convexity

Here defined with respect to the £;-norm:

Definition
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Restricted strong convexity

Here defined with respect to the £;-norm:
Definition
The loss function £,, satisfies RSC with parameters (o, 7;), j = 1,2 if
1 .
ar[|A3 - =ERAIF i Az <1

(VLA (0" + A) = VLa(67), A) > - :
az||Allz — T2/ E2|| Ay if |A]l2 > 1.

Measure of curvature

@ holds with 7 = 75 = 0 for any function that is locally strongly convex
around 6*

@ holds for a variety of loss functions (convex and non-convex):

» ordinary least-squares (Raskutti, W. & Yu, 2010)
» likelihoods for generalized linear models (Negahban et al., 2012)
» certain non-convex quadratic functions (Loh & W, 2012)
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Well-behaved regularizers

Properties defined at the univariate level Ry : R — [0, 00].
@ Satisfies R (0) = 0, and is symmetric around zero (Ry(t) = Ra(—t).)
@ Non-decreasing and subadditive Ry (s +t) < Ra(s) + Rx(t).
o Function ¢ — R*f(t)
@ Differentiable for all ¢ # 0, subdifferentiable at t = 0 with subgradients
bounded in absolute value by AL.

is nonincreasing for ¢ > 0

@ For some g > 0, the function R (t) = R (t) + ut? is convex.
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Well-behaved regularizers

Properties defined at the univariate level Ry : R — [0, 00].
@ Satisfies R (0) = 0, and is symmetric around zero (Ry(t) = Ra(—t).)
@ Non-decreasing and subadditive Ry (s +t) < Ra(s) + Rx(t).
o Function ¢ — R*f(t)
@ Differentiable for all ¢ # 0, subdifferentiable at t = 0 with subgradients
bounded in absolute value by AL.

is nonincreasing for ¢ > 0

@ For some g > 0, the function R (t) = R (t) + ut? is convex.

Includes (among others):
@ rescaled ¢; loss: Ry (t) = A|t].
@ MCP penalty and SCAD penalties (Fan et al., 2001; Zhang, 2006)

@ does not include capped ¢;-penalty

Martin Wainwright (UC Berkeley) May 2013 16 / 1



Main statistical guarantee

o regularized M-estimator
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€ arg min {£.6)+RAO)}

@ loss function satisfies («, 7) RSC, and regularizer is regular (with
parameters (u, L))
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é\ear min {ET 0) + R (0 }

gH@HlSM L( ) >\( )

@ loss function satisfies («, 7) RSC, and regularizer is regular (with
parameters (u, L))

@ local optimum 6 defined by conditions

~ ~ o~
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Main statistical guarantee

o regularized M-estimator

0 (0 o) L.
carg min {£.(6) + Ra(0)]

@ loss function satisfies («, 7) RSC, and regularizer is regular (with
parameters (u, L))
@ local optimum 6 defined by conditions

(VL (0) + VRAB), 6 —0) >0  for all feasible 0.

Theorem (Loh & W., 2013)
Suppose M is chosen such that 0* is feasible, and X\ satisfies the bounds

1
masc {| VLo (6|, 02| o0} < A < 2

- 6LM

Then any local optimum 0 satisfies the bound

65
1061 <

where s = [|5*||o-




Geometry of local/global optima

Consequence:

All { local, global } optima are within distance e_,,, of the target 6*.




Geometry of local/global optima

Consequence:

All { local, global } optima are within distance e_,,, of the target 6*.

With A = ¢4/ 1051’7 statistical error scales as

[slogp L. .
€atar = , which is minimax optimal.
n




Mean squared error

Empirical results
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Comparisons between different penalties
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@ have shown that all local optima are “statistically good”

@ how to obtain a local optimum quickly?



First-order algorithms and fast convergence
Thus far....

@ have shown that all local optima are “statistically good”

@ how to obtain a local optimum quickly?

Composite gradient descent for regularized objectives: (Nesterov, 2007)
in { /(6) + 9(6)}
min { £(0) + g(6)

where f is differentiable, and g is convex, sub-differentiable.



First-order algorithms and fast convergence
Thus far....

@ have shown that all local optima are “statistically good”

@ how to obtain a local optimum quickly?

Composite gradient descent for regularized objectives: (Nesterov, 2007)
in { /(6) + 9(6)}
min { £(0) + g(6)
where f is differentiable, and g is convex, sub-differentiable.
Simple updates:

41 _ . ot (]2
01 = argmin {10 — o' V£(6") |3+ 9(6) }.



First-order algorithms and fast convergence
Thus far....

@ have shown that all local optima are “statistically good”

@ how to obtain a local optimum quickly?

Composite gradient descent for regularized objectives: (Nesterov, 2007)
in { /(6) + 9(6)}
min { £(0) + g(6)
where f is differentiable, and g is convex, sub-differentiable.
Simple updates:

t+1 : ot ty(12
01 = argmin {10 — o' V£(6") |3+ 9(6) }.

Not directly applicable with f = £,, and g = R (since R, can be
NON-CONVeX).



Composite gradient on a convenient splitting

@ Define modified loss functions and regularizers:

La(6) = L£a(6) = ul6]3, and  Rx(8) = Ra(6) + 913
~———— ~————

non-convex convex



Composite gradient on a convenient splitting
@ Define modified loss functions and regularizers:

La(6) = L£a(6) = ul6]3, and  Rx(8) = Ra(6) + 913
~———— ~————

non-convex convex

@ Apply composite gradient descent to the objective

min {cn(e) + ﬁx(e)}.

0eQ



Composite gradient on a convenient splitting

@ Define modified loss functions and regularizers:

La(6) = L£a(6) = ul6]3, and  Rx(8) = Ra(6) + 913
~———— ~————

non-convex convex

@ Apply composite gradient descent to the objective

min {cn(e) + ﬁx(e)}.

0eQ

@ converges to local optimum 6 (Nesterov, 2007)

(VL (0) + VRAB), 6 —6) >0  for all feasible 6.



Composite gradient on a convenient splitting
@ Define modified loss functions and regularizers:
L(0) = L(0) = pll6]l3, and  RA(6) := Ra(6) + 1|03 -
~———— ~————

non-convex convex

@ Apply composite gradient descent to the objective

min {cn(e) + ﬁx(e)}.

0eQ

@ converges to local optimum 6 (Nesterov, 2007)

(VL (0) + VRAB), 6 —6) >0  for all feasible 6.

@ will show that convergence is geometrically fast with constant stepsize



Theoretical guarantees on computational error
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(Ln, Ry split.
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Theoretical guarantees on computational error
@ implement Nesterov’s composite method with constant stepsize to

(Ln, Ry split.

@ fixed global optimum 3 defines the statistical error ¢ = H§ — B*|5-

stat
@ population minimizer 5* is s-sparse

@ loss function satisfies («,7) RSC and smoothness conditions, and
regularizer is (u, L)-good

Theorem (Loh & W., 2013)

If n 77 slogp, there is a contraction factor k € (0,1) such that for any § > €.,
we have

1
S nggz )
n

“stat

~ 2
16" — 03 < p— ((52 + 1287 for all t > T(9) iterations,
a—p

where T(8) =< 11258;2




Geometry of result

Optimization error At := § —  decreases geometrically up to statistical
tolerance:

6 —Q|> < k' 10° — B> +o( |0F— 0> ) forallt=0,1,2,...
N——

2

stat

Stat. error ¢



Non-convex linear regression with SCAD

log error plot for corrected linear regression with SCAD, a = 2.5

—opterr
0 ——stat err

- B

log(||B"

0 200 400 600
iteration count

800 1000 1200



Non-convex linear regression with SCAD

log error plot for corrected linear regression with SCAD, a = 3.7
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