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For non-convex problems: “Mind the gap!”

any global optimum is “statistically good”....

but efficient algorithms only find local optima

Question

How to close this undesirable gap between statistics and computation?
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Vignette A: Regression with non-convex penalties
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Example: Logistic regression for binary responses yi ∈ {0, 1}:

θ̂ ∈ argmin
θ

{
1

n

n∑

i=1

{
log(1 + e〈xi, θ〉)− yi〈xi, θ〉

}
+Rλ(θ)

}
.

Many non-convex penalties are possible:
capped ℓ1-penalty

SCAD penalty (Fan & Li, 2001)

MCP penalty (Zhang, 2006)



Convex and non-convex regularizers
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}
.

Global minimizer of population risk

θ∗ := argmin
θ

EX,Y

[
L(θ;X,Y )

]

︸ ︷︷ ︸
L̄(θ)

Goal of statistician

Provide bounds on Statistical error: ‖θt − θ∗‖ or ‖θ̂ − θ∗‖

Goal of optimization-theorist

Provide bounds on Optimization error: ‖θt − θ̂‖



Logistic regression with non-convex regularizer
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Empirical observation #1:

From a statistical perspective, all local optima are essentially as good as a
global optimum.

Some past work:

for least-squares loss, certain local optima are good (Zhang & Zhang, 2012)

if initialized at Lasso solution with ℓ∞-guarantees, local algorithm has
good behavior (Fan et al., 2012)

Empirical observation #2:

First-order methods converge as fast as possible up to statistical precision.
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Here W ∈ Rn×p is a stochastic perturbation.



Example: Missing data
Missing data:

=

W
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Here W ∈ Rn×p is multiplicative perturbation (e.g., Wij ∼ Ber(α).)
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Example: Additive perturbations
Additive noise in covariates:

= +

W

n× pn× pn× p

Z X

Here W ∈ Rn×p is an additive perturbation (e.g., Wij ∼ N(0, σ2)).

= +n
S

εy X θ∗

Sc

n× p
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Corrected estimators

Equivalent formulation:

θ̂ ∈ arg min
θ∈Rp

{1

2
θT

(XTX

n

)
θ − 〈θ, X

T y

n
〉 + Rλ(θ)

}
.

Population view: unbiased estimators

cov(x1) = E

[XTX

n

]
, and cov(x1, y1) = E

[XT y

n

]
.

A general family of estimators

θ̂ ∈ arg min
θ∈Rp

{1

2
θT Γ̂θ − θT γ̂ + λ2

n‖θ‖21
}
,

where (Γ̂, γ̂) are unbiased estimators of cov(x1) and cov(x1, y1).
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observe corrupted version Z ∈ Rn×p

Zij =

{
Xij with probability 1− α

⋆ with probability α.

Natural unbiased estimates: set ⋆ ≡ 0 and Ẑ := Z
(1−α) :

Γ̂ =
ẐT Ẑ

n
− α diag

( ẐT Ẑ

n

)
, and γ̂ =

ẐT y

n
,

solve (doubly non-convex) optimization problem: (Loh & W., 2012)

θ̂ ∈ argmin
θ∈Ω

{1
2
θT Γ̂θ − 〈γ̂, θ〉+Rλ(θ)

}
.



Non-convex quadratic and non-convex regularizer
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Remainder of talk

1 Why are all local optima “statistically good”?

◮ Restricted strong convexity
◮ A general theorem
◮ Various examples

2 Why do first-order gradient methods converge quickly?
◮ Composite gradient methods
◮ Statistical versus optimization error
◮ Fast convergence for non-convex problems
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Restricted strong convexity

Here defined with respect to the ℓ1-norm:

Definition

The loss function Ln satisfies RSC with parameters (αj , τj), j = 1, 2 if

〈∇Ln(θ
∗ +∆)−∇Ln(θ

∗), ∆〉︸ ︷︷ ︸
Measure of curvature

≥
{
α1‖∆‖22 − τ1

log p
n ‖∆‖21 if ‖∆‖2 ≤ 1

α2‖∆‖2 − τ2

√
log p
n ‖∆‖1 if ‖∆‖2 > 1.
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Definition

The loss function Ln satisfies RSC with parameters (αj , τj), j = 1, 2 if

〈∇Ln(θ
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Measure of curvature
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{
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log p
n ‖∆‖21 if ‖∆‖2 ≤ 1

α2‖∆‖2 − τ2

√
log p
n ‖∆‖1 if ‖∆‖2 > 1.

holds with τ1 = τ2 = 0 for any function that is locally strongly convex
around θ∗

holds for a variety of loss functions (convex and non-convex):

◮ ordinary least-squares (Raskutti, W. & Yu, 2010)
◮ likelihoods for generalized linear models (Negahban et al., 2012)
◮ certain non-convex quadratic functions (Loh & W, 2012)
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Well-behaved regularizers

Properties defined at the univariate level Rλ : R → [0,∞].

Satisfies Rλ(0) = 0, and is symmetric around zero (Rλ(t) = Rλ(−t).)

Non-decreasing and subadditive Rλ(s+ t) ≤ Rλ(s) +Rλ(t).

Function t 7→ Rλ(t)
t is nonincreasing for t > 0

Differentiable for all t 6= 0, subdifferentiable at t = 0 with subgradients
bounded in absolute value by λL.

For some µ > 0, the function R̃λ(t) = Rλ(t) + µt2 is convex.
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Non-decreasing and subadditive Rλ(s+ t) ≤ Rλ(s) +Rλ(t).

Function t 7→ Rλ(t)
t is nonincreasing for t > 0

Differentiable for all t 6= 0, subdifferentiable at t = 0 with subgradients
bounded in absolute value by λL.

For some µ > 0, the function R̃λ(t) = Rλ(t) + µt2 is convex.

Includes (among others):

rescaled ℓ1 loss: Rλ(t) = λ|t|.
MCP penalty and SCAD penalties (Fan et al., 2001; Zhang, 2006)

does not include capped ℓ1-penalty
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Main statistical guarantee
regularized M -estimator

θ̂ ∈ arg min
‖θ‖1≤M

{
Ln(θ) +Rλ(θ)

}
.

loss function satisfies (α, τ) RSC, and regularizer is regular (with
parameters (µ,L))

local optimum θ̂ defined by conditions

〈∇Ln(θ̂) +∇Rλ(θ̂), θ − θ̂〉 ≥ 0 for all feasible θ.

Theorem (Loh & W., 2013)

Suppose M is chosen such that θ∗ is feasible, and λ satisfies the bounds

max
{
‖∇Ln(θ

∗)‖∞, α2

√
log p

n

}
≤ λ ≤ α2

6LM

Then any local optimum θ̂ satisfies the bound

‖θ̂ − θ∗‖2 ≤ 6λn
√
s

4 (α− µ)
where s = ‖β∗‖0.
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Geometry of local/global optima

θ̂

θ̃

θ′θ∗

ǫstat

Consequence:

All { local, global } optima are within distance ǫstat of the target θ∗.

With λ = c

√
log p
n , statistical error scales as

ǫstat ≍
√

s log p

n
, which is minimax optimal.



Empirical results (unrescaled)
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Empirical results (rescaled)
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Comparisons between different penalties
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First-order algorithms and fast convergence
Thus far....

have shown that all local optima are “statistically good”

how to obtain a local optimum quickly?

Composite gradient descent for regularized objectives: (Nesterov, 2007)

min
θ∈Ω

{
f(θ) + g(θ)

}

where f is differentiable, and g is convex, sub-differentiable.

Simple updates:

θt+1 = argmin
θ∈Ω

{
‖θ − αt∇f(θt)‖22 + g(θ)

}
.

Not directly applicable with f = Ln and g = Rλ (since Rλ can be
non-convex).
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{
L̃n(θ) + R̃λ(θ)

}
.

converges to local optimum θ̂ (Nesterov, 2007)

〈∇L̃n(θ) +∇R̃λ(θ̂), θ − θ̂〉 ≥ 0 for all feasible θ.

will show that convergence is geometrically fast with constant stepsize
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Theoretical guarantees on computational error
implement Nesterov’s composite method with constant stepsize to
(L̃n, R̃λ) split.

fixed global optimum β̂ defines the statistical error ǫ2stat = ‖β̂ − β∗‖2.

population minimizer β∗ is s-sparse

loss function satisfies (α, τ) RSC and smoothness conditions, and
regularizer is (µ,L)-good

Theorem (Loh & W., 2013)

If n % s log p, there is a contraction factor κ ∈ (0, 1) such that for any δ ≥ ǫstat,

we have

‖θt − θ̂‖22 ≤ 2

α− µ

(
δ2 + 128τ

s log p

n
ǫ2
stat

)
for all t ≥ T (δ) iterations,

where T (δ) ≍ log(1/δ)
log(1/κ) .



Geometry of result

∆̂0

∆̂1

∆̂t

θ̂

ǫ

θ∗ − θ̂

Optimization error ∆̂t := θt − θ̂ decreases geometrically up to statistical
tolerance:

‖θt+1 − θ̂‖2 ≤ κt ‖θ0 − θ̂‖2 + o
(

‖θ∗ − θ̂‖2︸ ︷︷ ︸
Stat. error ǫ2stat

)
for all t = 0, 1, 2, . . ..



Non-convex linear regression with SCAD

0 200 400 600 800 1000 1200
−8

−7

−6

−5

−4

−3

−2

−1

0

1

iteration count

lo
g(

||β
t  −

 β
* || 2)

log error plot for corrected linear regression with SCAD, a = 2.5

 

 

opt err
stat err



Non-convex linear regression with SCAD

0 200 400 600 800 1000 1200
−10

−8

−6

−4

−2

0

2

iteration count

lo
g(

||β
t  −

 β
* || 2)

log error plot for corrected linear regression with SCAD, a = 3.7

 

 

opt err
stat err



Summary
M -estimators based on non-convex programs arise frequently

under suitable regularity conditions, we showed that:

◮ all local optima are “well-behaved” from the statistical point of view
◮ simple first-order methods converge as fast as possible



Summary
M -estimators based on non-convex programs arise frequently

under suitable regularity conditions, we showed that:

◮ all local optima are “well-behaved” from the statistical point of view
◮ simple first-order methods converge as fast as possible

many open questions
◮ similar guarantees for more general problems?
◮ geometry of non-convex problems in statistics?



Summary
M -estimators based on non-convex programs arise frequently

under suitable regularity conditions, we showed that:

◮ all local optima are “well-behaved” from the statistical point of view
◮ simple first-order methods converge as fast as possible

many open questions
◮ similar guarantees for more general problems?
◮ geometry of non-convex problems in statistics?

Papers and pre-prints:

Loh & W. (2013). Regularized M -estimators with nonconvexity: Statistical and
algorithmic theory for local optima. Pre-print arXiv:1305.2436

Loh & W. (2012). High-dimensional regression with noisy and missing data:
Provable guarantees with non-convexity. Annals of Statistics, 40:1637–1664.

Negahban et al. (2012). A unified framework for high-dimensional analysis of
M -estimators. Statistical Science, 27(4): 538–557.


